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1 Introduction

The Minimal Supersymmetric Standard Model (MSSM) contains two Higgs doublets Hu

and Hd, whose Yukawa couplings to quarks are given by

Ly = −yiju ūiRQTj ǫHu + yijd d̄
i
RQ

T
j ǫHd + h.c. (1.1)

Here Qj , u
i
R and diR are the usual left-handed doublet and right-handed singlet quark

fields, ǫ is the antisymmetric 2× 2 matrix with ǫ12 = −ǫ21 = 1, and yu and yd are Yukawa

matrices with generation indices i, j = 1, 2, 3. The holomorphy of the superpotential forbids

couplings of Hu to dR and of Hd to uR, so that the Yukawa Lagrangian of eq. (1.1) is
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that of a two-Higgs-doublet model (2HDM) of type II. The neutral components of the

Higgs doublets acquire vacuum expectation values (vevs) vu and vd with v =
√
v2
u + v2

d ≈
174 GeV leading to quark mass matrices Mu = yuvu and Md = ydvd. Unitary rotations

of the quark fields in flavour space diagonalise these matrices, the resulting basis of mass

eigenstates is no more a weak basis (with manifest SU(2) symmetry) and the familiar

Cabibbo-Kobayashi-Maskawa (CKM) matrix appears in the couplings of the W boson

to the quark fields. As long as only the tree-level couplings of Ly are considered the

Yukawa couplings are diagonal in flavour space, yijq = yqjδij (no sum over j). At this point

no flavour-changing couplings of neutral Higgs bosons occur and the diagonal Yukawa

couplings are easily expressed in terms of quark masses mqj and tanβ ≡ vu/vd: ydj
=

mdj
/vd = mdj

/(v cos β) and yuj
= muj

/vu = muj
/(v sin β). If tanβ is large, the Higgs

couplings to down-type fermions can be enhanced to a level which is detectable in present-

day B physics experiments. In particular, for tan β = O(50) the bottom Yukawa coupling

yb = yd3 can be of order 1. A theoretical motivation of such large values of tan β is given

by bottom-top Yukawa unification, which occurs in SO(10) GUT models with minimal

Yukawa sector. Phenomenologically, the anomalous magnetic moment of the muon invites

large values of tan β [1], but the current situation is inconclusive in the light of recent

experimental data on the hadroproduction cross section measured by BaBar [2].

Once soft supersymmetry-breaking terms are considered, the pattern described above

changes dramatically: as pointed out first by Banks, one-loop diagrams induce an effective

coupling of Hu to djR [3]. Hall, Rattazzi and Sarid then discovered the relevance of this

loop contribution for large-tan β phenomenology [4–6]. If MSUSY, the mass scale of the

supersymmetry-breaking terms, is much larger than the masses and vevs of the Higgs

sector, we can integrate out the SUSY particles. The resulting effective Lagrangian is that

of a general 2HDM, different from the type-II 2HDM which we encounter at tree-level. In

the Super-CKM basis for the quark and squark fields, in which yijd = ydi
δij , the Yukawa

couplings of down-type quarks are given by the effective Lagrangian

Leff
y,d = ydi

d̄iRQ
T
i ǫHd − ỹijd d̄

i
RQ

T
j H

∗
u + h.c. (1.2)

In this paper we restrict ourselves to the case that the soft SUSY-breaking terms are

flavour-diagonal in the Super-CKM basis. As a consequence, all gluino-squark-quark and

neutralino-squark-quark couplings in the MSSM Lagrangian are flavour-diagonal. Further

the chargino-squark-quark couplings come with the same CKM elements as the correspond-

ing couplings of W bosons or charged Higgs bosons to (s)quarks. This scenario of naive

Minimal Flavour Violation (naive MFV) occurs if e.g. supersymmetry is broken at a low

scale by a flavour-blind mechanism leading to flavour-universal squark mass matrices. (A

symmetry-based and RG-invariant definition of MFV has been proposed in [7]. For a re-

cent analysis see ref. [8].) In our version of naive MFV, however, we slightly go beyond

flavour universality, as we allow the SUSY-breaking terms of the third generation to be

different from those of the first two generations. In this way we also include the cases of

the widely-studied CMSSM (see e.g. refs. [9, 10] for recent studies) and mSUGRA [11–16]

models, in which renormalisation-group (RG) effects involving the large top and bottom

Yukawa couplings destroy the universal boundary condition imposed at the GUT scale.
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−iỹdi

Figure 1: Effective coupling of the down-type quarks to Hu.

In such models with high-scale flavour universality the RG also induces flavour-violating

gluino and neutralino couplings at the electroweak scale, but their impact on FCNC transi-

tions like B−B mixing and b→ sγ is small [17, 18] and the naive MFV pattern essentially

stays intact. On the other hand, the universality of the flavour-diagonal SUSY-breaking

terms is badly broken at low energies, e.g. the trilinear term of the third generation At
substantially differs from Au ≃ Ac. We emphasize that no variant of the MFV assumption

forbids flavour-diagonal CP-violating phases [19]. Such phases appear in At, the higgsino

mass parameter µ, and the gaugino mass terms Mi, i = 1, 2, 3, which we consequently

always treat as complex quantities throughout our analysis.

The dominant contribution to the effective coupling ỹijd stems from a gluino-squark

loop and is depicted in figure 1. In naive MFV, the corresponding contribution to ỹijd is

ỹg̃di
δij with

ỹg̃di
= ydi

· ǫg̃i
(
µ,md̃i

L
,md̃i

R

)
,

and ǫg̃i

(
µ,md̃i

L
,md̃i

R

)
= −2αs

3π
mg̃µ

∗ C0

(
mg̃,md̃i

L
,md̃i

R

)
. (1.3)

Here m2
d̃i

L

and m2
d̃i

R

are the mass terms for the left-handed and right-handed down-squarks

of the i-th generation, respectively, mg̃ is the gluino mass and the loop integral C0 is

defined in appendix A. Accounting for similar contributions from loops with charginos

(still neglecting flavour mixing) or neutralinos we write ǫi = ǫg̃i + ǫeχ±

i + ǫeχ0

i . Both terms

in Leff
y,d of eq. (1.2) contribute to the masses of down-type quarks. The ratio of the two

contributions is

∆i ≡
ỹdi
vu

ydi
vd

= ǫi · tan β. (1.4)

A large value of tanβ can compensate for the loop factor ǫi rendering ∆i = O(1). The

relation between the Yukawa coupling ydi
and the physical quark mass mdi

is therefore

modified substantially:

ydi
=

mdi

vd(1 + ∆i)
. (1.5)

Several papers have studied the impact of ∆i on Yukawa unification [4, 6], neutral [20] and

charged Higgs [21] phenomenology.
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Later Hamzaoui, Pospelov and Toharia have discovered that ỹijd has a profound im-

pact on flavour physics: the down-quark mass matrix Md computed from Leff
y,d will be non-

diagonal and conversely a non-diagonal Yukawa coupling yijd appears in the basis of mass

eigenstates [22]. The resulting FCNC couplings of the non-standard neutral Higgs bosons

H0 and A0 are loop-suppressed but involve two powers of tanβ. Thus the new FCNC

couplings may compete in size with the flavour-diagonal tree-level coupling which involves

a single power of tanβ and is of order 1 in the case of the bottom quark. Importantly, these

effects are already highly relevant in naive MFV, where only chargino-loops contribute to

the off-diagonal entries of ỹijd , which moreover involve the same small CKM elements as the

SM contribution. In our effective theory, the general 2HDM with Leff
y,d in eq. (1.2), FCNC

processes proceed through tree diagrams with H0 or A0 exchange. Most spectacular ef-

fects occur in Bd,s → ℓ+ℓ− decays, where a priori orders-of-magnitude effects were possible

even in the MSSM with naive MFV [23]. The dominant Higgs-mediated contribution to

B(Bd,s → ℓ+ℓ−) is proportional to six powers of tanβ and B(Bd,s → ℓ+ℓ−) is more sensitive

to the large-tan β region of the MSSM than any other decay rate or cross section. A cor-

related analysis of B(Bd,s → ℓ+ℓ−) with the muon anomalous magnetic moment has been

performed in ref. [24]. The presence of ỹijd in Leff
y,d further leads to a modification of the

relation between yijd and the CKM elements by tanβ-enhanced loop corrections. This fea-

ture was studied in ref. [25] in MFV well before the discovery of the Higgs-mediated FCNC

effects.1 As a consequence, the couplings of the charged Higgs boson to down-type fermions

are modified, with phenomenological impact on B+ → τ+ν [27] and B+ → Dτ+ν [28, 29].

B−B mixing plays a special role: the superficially leading contribution from diagrams

with right-handed b-quark fields vanishes [22], because the two diagrams with H0 and A0

exchange cancel each other. Buras et al. have discovered that, despite of a suppression

factor of ms/mb, the analogous diagrams with one right-handed s-quark field can sizably

diminish Bs−Bs mixing [30]. This effect is highly correlated with B(Bs → ℓ+ℓ−) and

today’s upper bound on B(Bs → µ+µ−) from the Tevatron experiments [31, 32] severely

limits the size of the Higgs-mediated contribution in Bs−Bs mixing [33]. In subsequent

papers further contributions such as the charged-Higgs box diagram to B−B mixing [34]

and contributions to ỹijd involving the electroweak gauge couplings were considered [35, 36].

A complete list of all one-loop contributions to ỹijd for the case of universal SUSY-breaking

terms taking into account all possible CP phases can be found in ref. [36]. The absence of

the superficially dominant contribution rendersB−B mixing vulnerable to other subleading

corrections proportional to other small expansion parameters such as cot β, v/MSUSY or

the loop factor 1/(16π2). Any of these corrections could potentially spoil the cancellation

and endanger the correlation found in [30]. The recent symmetry-based analysis of ref. [36]

has revealed that all these subleading corrections are small and the correlation found in

ref. [33] essentially stays intact. An important ingredient of this study are contributions

to B−B mixing stemming from loop corrections to the Higgs potential. At this point

the appropriate definition of tan β, which is ill-defined in a general 2HDM, had to be

1Recently, this finite CKM renormalisation has been extended to the case of non-minimal flavour viola-

tion [26].
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clarified. Loop corrections to B−B mixing from the Higgs potential were also calculated

in ref. [37]. In view of the findings of refs. [36, 37] we neglect all radiative contributions

to Higgs self-couplings and work with the tree-level Higgs potential of the MSSM. The

latter is CP-conserving; we can work with the usual Higgs mass eigenstates with definite

CP quantum numbers (i.e. the CP-odd A0 and the CP-even h0,H0) and all CP-violation

discussed in this paper enters through the (loop-corrected) Yukawa sector.

The last three paragraphs have addressed Higgs couplings to right-handed down-type

quarks which involve a factor of tan β at tree-level. A different type of tan β-enhanced

corrections occurs in Higgs couplings of the right-handed top-quark field, which are sup-

pressed by a factor of cot β at tree level. A prominent example is the tRsLH
+ coupling

entering the charged-Higgs loop in b→ sγ. Supersymmetric vertex corrections lift the cot β

suppression and the one-loop correction competes with the tree-level coupling [38, 39]. In

the decoupling limit also these effects can be easily described by an effective Lagrangian

Leff
y,u, which in addition to the first term in eq. (1.1) contains an effective loop-induced

coupling ỹiju involving H∗
u.

The appearance of the tanβ-enhanced supersymmetric loop correction ∆i in the de-

nominator of yi in eq. (1.5) signals the resummation of this correction to all orders in

perturbation theory. As a drawback, the effective-field-theory method is only valid for

MSUSY ≫ v,MA0 ,MH0 ,MH+ . This is unsatisfactory, since in supersymmetry one naturally

expectsMSUSY ∼ v, especially if the electroweak symmetry is broken radiatively. One needs

an unnatural fine-tuning in the Higgs potential to achieve MSUSY ≫MA0 ,MH0 ,MH+ [37].

After all the widely-studied scenarios with neutralino LSP involve several supersymmet-

ric particles with masses around and below v. Of course, several authors have discov-

ered tan β-enhanced loop corrections within diagrammatical one-loop calculations in the

MSSM [40, 41]. Yet only four papers have studied tan β-enhanced corrections with their

subsequent resummation beyond the MSUSY ≫ v limit: in ref. [21] the tan β-enhanced

diagrams contributing to ∆i have been identified to all orders and have been explicitly

resummed. The result of ref. [21] mimics the form of eq. (1.5), but ∆i involves squark mass

eigenstates and its validity does not assume any hierarchy between v andMSUSY. In ref. [42]

the method of ref. [21] has been applied to the lepton sector in an analysis of the muon

anomalous magnetic moment. The authors of ref. [35] have calculated Higgs-mediated

FCNC processes to one-loop order for arbitrary MSUSY, but relied on the effective-field-

theory formalism for the all-order resummation. In ref. [19] the tanβ-enhanced corrections

to the Yukawa sector have been incorporated in an effective-potential approach, with a

proper consideration of all CP phases of the MSSM. The results of refs. [19, 35] permit

the resummation of the flavour-changing tan β-enhanced corrections through an iterative

procedure, which converges if the magnitude of these resummed corrections are numerically

smaller than 1. We present analytical resummation formulae in this paper corresponding

to the limits to which the iterative method converges.

It is illustrative to consider the extension of the effective-field-theory formalism to

subleading powers in v2/M2
SUSY: to this end we must add higher-dimensional couplings to

Leff
y involving more Hu fields. The gluino contributions to these new effective couplings

are shown in figure 2. Interestingly, in this simple case one can sum the contributions of

– 5 –
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g̃

d̃iL d̃iR
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Hu

Hu Hu

g̃

d̃iL d̃iR

d̃iR d̃iL

+
diL diR

HuHu Hu

Hu Hu

g̃

+ ...

Figure 2: Series of ‘hedgehog diagrams’ contributing to mdi
.

these ‘hedgehog diagrams’ to mdi
to all orders in v2/M2

SUSY: the result has again the form

of eq. (1.5) with ǫg̃i of eq. (1.4) replaced as

ǫg̃i (µ,md̃i
L
,md̃i

R
) → ǫg̃i (µ,md̃i

1
,md̃i

2
), (1.6)

where md̃i
1,2

denote the physical squark masses, i.e. the eigenvalues of the squark mass

matrix. Using this expression in eqs. (1.4) and (1.5) reproduces the result of the diagram-

matic resummation of ref. [21]. The information encoded in the diagrams of figure 2 is also

contained in the one-loop effective functional of ref. [19].

In this paper we derive formulae for the resummation of tan β-enhanced corrections

which are valid for any value of MSUSY. As in any analysis of radiative corrections this

requires the full control over the renormalisation scheme of the parameters in the MSSM

Lagrangian. This can be achieved with the diagrammatic method of ref. [21], but is very

difficult to achieve with the effective-field-theory formalism, even if one succeeds to resum

the series in v2/M2
SUSY as in eq. (1.6). The origin of this difficulty is readily understood:

while resummation formulae derived from Leff
y correspond to a decoupling scheme for the

MSSM parameters, any two of such schemes may differ by terms of order v/MSUSY and the

corresponding resummation formulae look different. The plan of the paper is as follows:

in section 2 we first recall the diagrammatic resummation method and then address the

open issues of the case without flavour mixing. In particular we clarify the renormalisation

scheme of the sbottom mixing angle and derive analytic expressions for ∆b ≡ ∆3 for three

different schemes. In section 3 we resum the tan β-enhanced loop effects in FCNC processes.

Section 4 is devoted to an analysis of tan β-enhanced corrections to FCNC processes in B

physics. Section 5 contains a numerical study of the Wilson coefficients C7 and C8 and an

analysis of novel effects in B → φKS . Finally we conclude.

2 Diagrammatic resummation: the flavour-conserving case

We use the conventions of the SUSY Les Houches Accord (SLHA) [43] for the MSSM

parameters. Several of these parameters carry complex phases, but only certain phase dif-

ferences are physical, CP-violating quantities. We choose a phase convention in which the

gluino mass parameter M3 is real and positive, so that M3 = mg̃. The phases entering the

left-right mixing of squarks are unspecified by the SLHA and are defined in appendix A,

– 6 –
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where also our conventions for the loop integrals can be found. We always work in the

Super-CKM basis, in which the Yukawa matrices are diagonal in flavour space. For defi-

niteness we consider the quark sector only and in our discussion of flavour-diagonal effects

we usually quote the results for the b quark. The expressions generalise to the case of the

τ lepton in a straightforward way, by dropping the gluino contributions, replacing squarks

by sleptons and changing the hypercharges in the couplings appropriately.

2.1 The method

There are two potential sources of tan β-enhanced corrections,

i) the (renormalised) MSSM Lagrangian L and

ii) the transition matrix element M from which the process of interest is calculated.

We first identify the enhanced corrections at one-loop order and turn to higher orders (and

the resummation) afterwards. To address point i) we decompose L in the usual way as

L = Lren +Lct, where Lren is obtained from L by replacing bare quantities by renormalised

ones and Lct contains the counterterms. Loop effects only reside in Lct and the quark

mass counterterm δmb is a source of tan β-enhanced corrections. We write mb for the

renormalised mass, so that the bare mass reads m
(0)
b = mb + δmb. The mass term in L is

Lm = − m
(0)
b bRbL − m

(0)∗
b bLbR = − mb bb − δmb bRbL − δm∗

b bLbR. (2.1)

Here we have taken into account that δmb must be complex to render mb real if the

loops canceled by δmb involve complex parameters. We further decompose the self-energy

Σb(p) as

Σb(p) = /p
[
ΣLL
b (p2)PL + ΣRR

b (p2)PR
]

+ ΣRL
b (p2)PL + ΣLR

b (p2)PR

with ΣLR
b (p2) =

(
ΣRL
b (p2)

)∗
,

(2.2)

where PL,R = (1 ∓ γ5)/2 and p is the external momentum. If the mass is renormalised

on-shell, i.e. if mb coincides with the pole of the propagator, the counterterm reads

δmb = −mb

2

[
ΣLL
b (m2

b) + ΣRR
b (m2

b)
]
− ΣRL

b (m2
b). (2.3)

The second term ΣRL
b (m2

b) contains pieces proportional to ybv sin β and is therefore tan β-

enhanced compared to the tree-level termmb = ybv cosβ. These contributions are depicted

in figure 3 and read:

ΣRL
b = mb∆b with ∆b = ∆g̃

b + ∆eχ±

b + ∆eχ0

b (2.4)

– 7 –
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g̃

b̃1,2

bL bR

t̃1,2

χ̃−
1,2

bL bR

b̃1,2

χ̃0
1..4

Figure 3: tan β-enhanced self-energy diagrams with (from left to right) gluinos, charginos

and neutralinos.

and

∆g̃
b =

αs
3π

mg̃

mb
sin 2θ̃b e

−iφ̃b ·
[
B0(mg̃,mb̃1

) −B0(mg̃,mb̃2
)
]
, (2.5)

∆eχ±

b = − 1

16π2

1

cos β

2∑

m=1

{
m

eχ±
m

2
√

2MW

yt
g
Ũ∗
m2Ṽ

∗
m2 sin 2θ̃te

iφ̃t

·
[
B0(meχ±

m
,mt̃1

) −B0(meχ±
m
,mt̃2

)
]

−
m

eχ±
m

MW
Ũ∗
m2Ṽ

∗
m1

[
cos2 θ̃tB0(meχ±

m
,mt̃1

) + sin2 θ̃tB0(meχ±
m
,mt̃2

)
]}

, (2.6)

∆eχ0

b =
1

16
√

2π2

1

cos β

4∑

m=1

meχ0
m

2MW
Ñ∗
m2Ñ

∗
m3

·
[
cos2 θ̃bB0(meχ0

m
,mb̃1

) + sin2 θ̃bB0(meχ0
m
,mb̃2

)
]
. (2.7)

In (2.7) we have neglected some numerically small contributions: first, a term proportional

to g′2 stemming from the bino component of the neutralinos is omitted. Second, a numeri-

cally small term proportional to g2 (which moreover is suppressed by (v/MSUSY)2 for large

MSUSY and is therefore absent in the effective Lagrangian of eq. (1.2)) is neglected. Clearly,

we have also discarded terms suppressed by m2
b/M

2
SUSY; in particular ΣRL

b is evaluated for

p2 = 0. Whereas in the effective-theory approach the tan β-enhancement was easily recog-

nisable by the coupling toHu, in the diagrammatic treatment it is hidden in the elements of

the mixing matrices. Using the analytic expressions for these matrices listed in appendix A,

i.e. identities like eq. (A.10) and eqs. (A.19)–(A.22), we can derive formulae for the gluino-

and chargino-contributions in which the tan β-enhancement becomes explicit. Writing

∆K
b = ǫKb tan β for K = g̃, χ̃±, χ̃0 and ǫb = ǫg̃b + ǫeχ±

b + ǫeχ0

b (2.8)

we find

ǫg̃b = −2αs
3π

mg̃µ
∗C0(mg̃,mb̃1

,mb̃2
), (2.9)

ǫeχ±

b = − y2
t

16π2
A∗
tµ

∗
(
D2 − |M2|2D0

)
+

g2

16π2
µ∗M∗

2

(
D2 −m2

t̃R
D0

)
, (2.10)

where D0,2 = D0,2(meχ±
1
,m

eχ±
2
,mt̃1

,mt̃2
). (The tan β-enhancement of ∆eχ0

b is already man-

ifest in eq. (2.7) through the factor 1/ cos β ≃ tan β.) Formulae analogous to eqs. (2.5)–

(2.10) are also valid for the corresponding self-energies of the d- and the s-quark with the
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stop and sbottom masses appropriately replaced by the corresponding squark masses of

the first or second generation. eqs. (2.5)–(2.10) generalise the well-known expressions of

ref. [44] to the case of complex MSSM parameters.

Different renormalisation schemes correspond to different choices of Lct, hence the

analytic form of the tanβ-enhanced corrections depends on the chosen scheme. If we want

to use a numerical value for mb determined from low-energy data, we must apply an on-

shell subtraction to the supersymmetric loops as in eq. (2.3) (which is the appropriate

“decoupling scheme”). To leading order in tanβ this means

δmb = −ΣRL
b = −mbǫb tan β. (2.11)

At this point we recall that the loops constituting ǫb are finite, just as all other tan β-

enhanced loops appearing in this paper. Therefore all counterterms and all bare quantities

discussed are finite as well. We write the bare Yukawa couplings as y
(0)
b = yb + δyb, where

yb is the renormalised coupling and δyb is the counterterm. The choice of δmb fixes δyb
through

δyb =
δmb

vd
= −ybǫb tan β. (2.12)

The supersymmetric loop effects encoded in ǫb enter physical observables only through

δyb. Choosing e.g. a minimal subtraction for δmb would remove the tanβ-enhanced term

from eq. (2.12) and there would be nothing to resum. However, in this scheme the input

value for mb is obtained from the measured bottom mass by adding mbǫb tan β. Thus the

inferred value of yb = mb/vd will implicitly contain the tanβ-enhanced corrections, so that

physical observables are scheme-independent [21]. In a practical application one must also

address the renormalisation from ordinary QCD corrections. Whenever we refer to the MS

mass mb we imply that the MS prescription is applied to the quark-gluon loop only, while

we always subtract the supersymmetric loops on-shell.

Now, are there other sources of tan β-enhanced one-loop corrections in Lct? There are

renormalisation schemes proposed in the literature in which the counterterm to tanβ is

proportional to tan2 β, so that eq. (2.12) would receive an additional contribution. This

feature is obviously absent for the commonly used definition of tanβ in the DR scheme.

Finally the one-loop renormalisation also involves wave-function counterterms. Those of the

quark fields are not tanβ-enhanced and the wave-function counterterms of the Higgs fields

drop out if the Higgses solely occur in internal lines of the diagrams. (These counterterms

nevertheless play a role in schemes in which the counterterm δ tan β is derived from wave-

function counterterms and counterterms to the vevs. This subtlety is absent for the DR-

defined δ tan β.) The issue of tan β renormalisation is thoroughly analysed in refs. [45–47]

and was recently studied for quark flavour physics in the context of the effective-field-theory

method [36, 37]. In our diagrammatic approach, where the issue is somewhat simpler, the

topic of tanβ renormalisation is briefly discussed in ref. [42] in an application to the muon

anomalous magnetic moment. In conclusion, the only source of tan β-enhanced corrections

in Lct is δyb of eq. (2.12) unless an inappropriate definition of tanβ is adopted.

Next we turn to the second point mentioned at the beginning of this section. In

order to identify tanβ-enhanced corrections to a given transition matrix element M we
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must distinguish two cases: in the first case the leading-order contribution to M has no

suppression factor of cot β in any coupling. Examples for such unsuppressed couplings

are those of A0 and H0 to down-type quarks, the H+ coupling to right-handed down-

type quarks or any gauge coupling. In this situation M can only have a tan β-enhanced

correction if the loop integral involves at least one inverse power ofmb, which combines with

yb ∝ mb tan β to a factor of tan β. The presence of such inverse powers ofmb is related to the

infrared behaviour of M formb → 0. This behaviour can be studied by matching M onto an

effective matrix element Meff which is obtained from M by contracting all lines of particles

heavier thanmb to a point [21]. This analysis should not be confused with the effective-field-

theory method described in the Introduction: Here only MSUSY, v,MA0 ,MH0 ,MH+ ≫ mb

is assumed, with no assumption on the hierarchy between MSUSY and v. The result of

ref. [21] is that no such tanβ-enhanced correction from genuine multi-loop diagrams occur

in the first case. The second case deals with matrix elements M with an explicit cot β-

suppressed coupling (such as the h0 coupling to down-type quarks or the H+ coupling to

left-handed down-type quarks) in the leading order. Here the situation is different, but

trivial: an explicit one-loop vertex correction lifts the suppression and this tan β-enhanced

correction does not replicate itself in higher orders [38, 39].

We now discuss higher orders of the perturbative expansion and the resummation:

while no genuine multi-loop diagrams give enhanced corrections, there are one-loop dia-

grams involving lower-order counterterms δyb. We make the yb-dependence of the self-

energy explicit by writing ΣRL
b (yb). The Yukawa coupling yb enters ΣRL

b (yb) either directly

via the quark-squark-higgsino-vertex or indirectly via the sbottom mixing angle. Now, let

us consider such self-energy diagrams in which one or more of the couplings yb are replaced

by the counterterm δyb. The mass counterterm δmb reads

δmb = vdδyb = −ΣRL
b (yb + δyb). (2.13)

to all orders of the perturbative expansion and to leading order in tan β. Let us denote the

n-th order contribution to δyb by δy
(n)
b . We can solve eq. (2.13) recursively, by expressing

δy
(n)
b in terms of δy

(n−1)
b . Effectively δy

(n)
b is simply computed from the one-loop diagrams

contributing to ΣRL
b including all possible substitutions of yb by δy

(k)
b , k = 1, . . . n − 1.

Adapting eq. (2.4) and eqs. (2.8)–(2.10) to account for the desired higher-order terms

we write

ΣRL
b = m

(0)
b ∆b = y

(0)
b vǫb sin β. (2.14)

Whenever ΣRL
b is linear in y

(0)
b , that is if ǫb does not depend on y

(0)
b , one can easily determine

δyb to all orders: noting that yb = mb/vd the one-loop result of eq. (2.12) is replaced by

δyb = −mb

vd

[
ǫb tan β − (ǫb tan β)2 + (ǫb tan β)3 − . . .

]
= −mb

vd

ǫb tan β

1 + ǫb tan β
. (2.15)

If we discard the neutralino contribution and take ǫg̃b and ǫeχ±

b from eqs. (2.9) and (2.10),

we indeed find ǫb independent of yb. There is a shortcut to eq. (2.15): adding mb = ybvd
to both sides of eq. (2.13) gives

vdy
(0)
b = mb − y

(0)
b vdǫb tan β (2.16)
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which is easily solved for y
(0)
b resulting in the resummation formula of ref. [21]:

y
(0)
b =

mb

vd(1 + ǫb tan β)
. (2.17)

The linearity of ǫg̃b+ǫ
eχ±

b in yb beyond the decoupling limit appears to contradict the dis-

cussion in the Introduction, since the hedgehog diagrams of figure 2 contain any odd power

of yb. However, these additional factors of yb are implicitly contained in the sbottom mass

eigenstates mb̃1,2
. From this observation it becomes clear that for the correct resummation

of the tan β-enhanced corrections one must clearly state the renormalisation scheme for the

supersymmetric parameters. eq. (2.17) implies an on-shell scheme for the sbottom masses

meaning here that mb̃1,2
are used as inputs. By contrast, many supersymmetric analyses

use the diagonal elements of the mass matrix, mb̃L,R
and the µ parameter (entering the

off-diagonal elements) as inputs. In this scheme yb enters the problem explicitly via the

mass matrix and eq. (2.17) is not correct. Similarly, eq. (2.17) must also be modified if

the sbottom mixing angle θ̃b and the mixing phase φ̃b are used as input parameters. These

parameters are the natural choice for applications to collider physics, especially once the

bottom squarks are discovered and their properties are to be studied. It is therefore of ut-

most importance to control the definition of θ̃b, in particular if constraints from low-energy

data shall be combined with collider physics. We analyse this point in section 2.2.

In summary, whenever M does not suffer from cot β-suppression in the leading order,

all tan β-enhanced corrections stem from δyb. The dominant contributions from gluino

and chargino loops can be resummed to all orders at the Lagrangian level, if an adequate

scheme for the sbottom mass parameters is adopted. We stress that the resummed terms

are local, so that one can reproduce the resummed effects from an effective Lagrangian. The

effective bLbRH
0, bLbRA

0 and tLbRH
+ couplings are simply obtained by replacing the tree-

level Yukawa coupling with y
(0)
b in eq. (2.17). That is, the description of these couplings

by an effective Lagrangian does not require any assumption on the size of MSUSY: e.g.

the use of eq. (2.17) also correctly resums the tan β-enhanced corrections in high-energy

collider processes, even if the momenta of the particles involved are of the order of MSUSY.

Further the results of ref. [21] also extend to other couplings in the MSSM Lagrangian

which are governed by yb: also in the higgsino couplings of the charginos and neutralinos

the use of eq. (2.17) correctly resums the enhanced corrections, irrespective of the sizes

of the momenta and masses involved. The Feynman rules for these effective couplings are

listed in appendix C. However, the situation is different for a cot β-suppressed process:

here the enhanced one-loop correction depends on the kinematics of the studied process.

For example, the coupling of the Standard-Model-like Higgs boson h0 to fermions involves

tan β-enhanced momentum-dependent one-loop form factors.

2.2 Sbottom mixing and resummation

As an introductory remark, we note that the resummation issue is simple if one interchanges

the roles of yb and mb: choosing δyb as input will fix δmb through eq. (2.13), there are no

enhanced corrections beyond one-loop order and any non-linear dependence of ΣRL
b on yb

does not pose a problem. This avenue has been pursued in section 2 of ref. [21]. Yet in
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any phenomenological application we face the fact that we have precise data on mb and

not on yb, so that we are stuck with the task to invert eq. (2.16). We discuss this for three

well-motivated schemes for the sbottom mass matrix here:

(i) Input: m2
b̃1

, m2
b̃2

; µ, tanβ

If we express the sbottom mixing angle θ̃b and phase φ̃b in eq. (2.5) through our input

parameters, using relation (A.10), the bottom mass in ∆g̃
b cancels and we find the

gluino and chargino contributions to ΣRL
b to be linear in yb. This is the case used to

illustrate the resummation in eq. (2.15). If we assume the neutralino contributions

to be linear in yb, too, we arrive at

y
(0)
b =

mb

vd(1 + ∆b)
. (2.18)

The chargino contribution ΣRL,eχ±

b = m
(0)
b ∆eχ±

b is always linear in yb, it is not influ-

enced by our choice of input parameters since no bottom squarks are involved. The

neutralino contribution ΣRL,eχ0
= m

(0)
b ∆eχ0

b in (2.7) can be rewritten as

ΣRL,eχ0

b =
ybg

16π2

4∑

m=1

meχ0
m√
2
Ñ∗
m2Ñ

∗
m3 · B0(meχ0

m
,mb̃1

) (2.19)

− ybg

16π2

4∑

m=1

meχ0
m√
2
Ñ∗
m2Ñ

∗
m3 sin2 θ̃b

(
B0(meχ0

m
,mb̃1

) −B0(meχ0
m
,mb̃2

)
)
,

where the first line is linear in yb, but the second line is found to contain terms of third

order and higher in yb after insertion of (A.10). In the decoupling limit MSUSY ≫ v,

these higher order terms, which are proportional to sin2 θ̃b ∝ v2/M2
SUSY, vanish

and the neutralino contribution is correctly included into (2.18). For MSUSY ∼ v

on the other hand, the higher-order terms spoil the proper resummation because

equation (2.13) cannot be solved analytically anymore. As ∆eχ0

b is small anyway,

formula (2.18), though not entirely correct in this case, still holds to a very good

approximation.

(ii) Input: m2
b̃1

, m2
b̃2

; θ̃b, φ̃b

Assuming that some day it will be possible to measure θ̃b and φ̃b, we could take

these quantities as our input instead of µ and tanβ. In eqs. (2.5) and (2.7) ∆g̃
b and

∆eχ0

b are directly given as a function of θ̃b and φ̃b. Obviously, ΣRL,g̃
b = m

(0)
b ∆g̃

b does

not exhibit any explicit yb-dependence in this case, so that no reinsertion of δyb into

ΣRL,g̃
b is possible (it is absorbed into the physical mixing angle). The neutralino con-

tribution ΣRL,eχ0

b on the other hand is linear in yb if we choose θ̃b as input and it can

be properly resummed now, in contrast to case (i). The modified relation between

y
(0)
b and mb then reads

y
(0)
b = yb + δyb =

mb

vd

1 − ∆g̃
b

1 + ∆eχ±

b + ∆eχ0

b

. (2.20)
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Note that this scheme does not involve an explicit tan β-enhanced counterterm to

θ̃b. The implicit resummation encoded in a “measured” value of θ̃b must, however,

be taken into account in a proper analysis of the MSSM parameter space: in the

large-tan β limit eqs. (A.5) and (A.10) imply a correlation between y
(0)
b , µ and our

input parameters:

eiφ̃b sin 2θ̃b = − 2y
(0)∗
b µvu

m2
b̃1
−m2

b̃2

(2.21)

That is, in scheme (ii) µ inherits the large correction from y
(0)
b because the product

y
(0)∗
b µ is fixed. Since µ enters the chargino and neutralino mass matrices Meχ±,0 , one

should solve eq. (2.21) for µ, use the value in χ̃±,0 and repeat the steps iteratively

until eqs. (2.20) and (2.21) are sufficiently (i.e. up to the neglected cot β-suppressed

correction proportional to Ab) compatible. As a corollary we remark that a measure-

ment of mb̃1,2
, θ̃b and µ (which can be inferred from chargino or neutralino masses)

completely fixes |y(0)
b | through eq. (2.21) if tanβ is large. Once |y(0)

b | is known the

coupling strengths of A0 and H0 to bottom quarks are fixed. |y(0)
b | enters the pro-

duction cross sections of these particles and cannot be studied in A0,H0 decays to b

quarks at the LHC because of the large bb background from QCD processes.

(iii) Input: m2
b̃L

, m2
b̃R

; µ, tan β

As the masses and mixing angles of the SUSY particles are not measured yet, this set

is the most prominent one because its elements directly appear in the Lagrangian. In

terms of these input parameters, the mixing angle can be expressed with the help of

eiφ̃b tan 2θ̃b = − 2y
(0)∗
b µvu

m2
b̃L

−m2
b̃R

(2.22)

Since ∆g̃
b is proportional to sin 2θ̃b = tan 2θ̃b/(

√
1 + tan2 2θ̃b) and in addition the

squark masses appearing in the loop functions have to be replaced by m2
b̃L

and m2
b̃R

via (A.8), the yb-dependence of ∆g̃
b gets so complicated that (2.13) cannot be solved

analytically anymore. This problem can be avoided in the following way: in a first

approximation, we determine m2
b̃1,2

from (A.8) using the tree level value for yb. Now

we can calculate ∆b as a function of the parameter set (i). In a next step, the resulting

modified Yukawa coupling (2.18) can be reinserted into (A.8) to get corrected values

for m2
b̃1,2

. This procedure has to be repeated until the value of ∆b converges. The

resummed Yukawa coupling is then given by (2.18). Alternatively, we could calculate

∆g̃
b and ∆eχ0

b iteratively as a function of the input parameters (ii), determining sin 2θ̃b
from eq. (2.22). In that case, eq. (2.20) provides the resummed Yukawa coupling.

Eq. (2.18) has the same form as the widely-used relation between y
(0)
b and mb valid in the

decoupling limit and quoted in eq. (1.5). Therefore we will take parameter set (i) as the

physical input from now on.
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di
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d
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Figure 4: tanβ-enhanced flavour-changing self-energy

3 Flavour mixing at large tan β

In the effective-field-theory approach the resummation of tan β-enhanced effects in flavour-

changing transitions is achieved in the same way as in the flavour-conserving case: one cal-

culates loop-induced couplings ofHu to quarks, now taking flavour mixing into account. Af-

ter the Higgs doublets acquire their vevs the down-quark mass matrix is diagonalised. In the

basis of quark mass eigenstates we face flavour-non-diagonal Yukawa couplings, as expected

in a general 2HDM [22, 23, 30, 34]. This method is correct for MSUSY ≫ v,MA0,H0,H± . In

this section we extend the resummation of tan β-enhanced effects to the case of any hierar-

chy between MSUSY and v to cover the natural situation MSUSY ∼ MA0,H0,H± ∼ v. First,

our results allow us to assess the accuracy of the decoupling limit used in the literature.

Second, we access a new field and calculate the tan β-enhanced loop corrections to genuine

supersymmetric couplings: for instance, the gluino-quark-squark coupling, which is flavour-

diagonal at tree-level, receives enhanced FCNC loop corrections just as the neutral Higgs

bosons A0 and H0 do. These effective FCNC couplings of supersymmetric particles cannot

be studied with the effective-field-theory approach, because these particles are treated as

heavy and are integrated out.

Our diagrammatic treatment of tanβ-enhanced loop corrections can easily be gener-

alised to the flavour off-diagonal case. In the naive MFV framework, tan β-enhanced flavour

transitions only arise from self-energies of down-type quarks involving chargino-squark ex-

change (see figure 4). In the case of d-s-transitions, the stop contribution is suppressed by

V ∗
tsVtd. Since we neglect the small Yukawa couplings of up and charm and take degenerate

masses for ũ and c̃ squarks, the ũ and c̃ contributions to d-s-transitions vanish because of a

GIM cancellation. For the flavour-changing self-energies involving a bottom quark we find

ΣRL
ij (V ) = V ∗

tiVtj
miǫFC tan β

1 + ǫi tan β
, for (i, j) = (3, 1), (3, 2), (1, 3), (2, 3). (3.1)

Here the unitarity of the CKM matrix and the mass degeneracy of the ũ and c̃ squarks

have been used to factor out the CKM combination V ∗
tiVtj . The explicit expression for ǫFC

in terms of the stop mixing-parameters θ̃t, φ̃t and the chargino mixing matrices Ũ , Ṽ reads

ǫFC = − 1

16π2

g√
2MW sin β

2∑

m=1

mχ̃±
m
Ũ∗
m2

[yt
2
Ṽ ∗
m2 sin 2θ̃te

iφ̃t

(
B0(mχ̃±

m
,mt̃1

)−B0(mχ̃±
m
,mt̃2

)
)

−gṼ ∗
m1

(
cos2 θ̃tB0(mχ̃±

m
,mt̃1

) + sin2 θ̃tB0(mχ̃±
m
,mt̃2

) −B0(mχ̃±
m
,mq̃)

)]
, (3.2)
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(1)

bL bR sL
ΣRL∗
bs

(2)

Figure 5: Feynman diagrams with flavour-changing self-energy in an external leg.

with mq̃ denoting the common mass of the left-handed first and second generation squarks.

If one wants to express ǫFC in terms of the SUSY-breaking parameters instead, one can use

the relations given in appendix A to find

ǫFC = − y2
t

16π2
A∗
tµ

∗
(
D2 − |M2|2D0

)
+

g2

16π2
M∗

2µ
∗
(
D2 −m2

t̃R
D0 − C0

)
(3.3)

where D0,2 = D0,2(meχ±
1
,m

eχ±
2
,mt̃1

,mt̃2
) and C0 = C0(meχ±

1
,m

eχ±
2
,mq̃). Eq. (3.3) makes

clear that ǫFC and thus also the tanβ-enhanced flavour-changing self-energies are directly

linked to the SUSY-breaking sector of the Lagrangian. They vanish if M2 and At are set

to zero. The part of ǫFC which is proportional to g2 is absent in the decoupling limit with

mt̃L
= mq̃. We next present two different ways to account for ǫFC in practical calculations of

low-energy flavour observables. The first option, explained in section 3.1, is to consider self-

energy corrections in external quark legs. The second possibility, discussed in section 3.2,

involves a flavour-non-diagonal wave-function renormalisation for the quark fields, which

enters the Feynman rules of the couplings of quarks to SUSY particles and Higgs fields.

3.1 Flavour-changing self-energies in external legs

Consider the generic situation of a self-energy subdiagram in an external quark leg of some

Feynman diagram, as displayed in figure 5 for the case of an external s quark. In flavour-

conserving transitions such self-energies in external legs are truncated, they instead enter

the S-matrix elements through the LSZ factor (“external wave-function renormalisation”).

However, if the truncation affects a particle with a different mass than the external par-

ticle, the diagram with the external self-energy can be treated in the same way as a 1PI

vertex correction [48], provided that the mass difference is much larger than the self-energy

diagram. Despite of the tanβ-enhancement, this condition, which reads mb−ms ≫ |Σbs| in
our case, is certainly fulfilled because the self-energy Σbs is CKM-suppressed by a factor of

VtsV
∗
tb. Treating external self-energies as 1PI diagrams makes the origin of the large effects

most obvious. The alternative approach, which truncates all self-energies and introduces

flavour-non-diagonal wave-function renormalisation, is discussed below in section 3.2. Of

course, both methods lead to the same results for physical amplitudes.

For definiteness we consider diagrams with external s or b quarks (figure 5). The case

of b-d transitions is obtained by obvious replacements. For ms = 0 the Feynman amplitudes
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are given by

M1 = Mrest
1 ·

i(/p+mb)

p2 −m2
b

∣∣∣∣
/p=0

(−iΣRL
bs ) = −Mrest

1 · VtsV ∗
tb

ǫFC tan β

1 + ǫb tan β
, (3.4)

M2 = Mrest
2 ·

i(/p+ms)

p2 −m2
s

∣∣∣∣
/p=m

pole
b

(−iΣRL∗
bs ) = +Mrest

2 · V ∗
tsVtb

ǫ∗FC tan β

1 + ǫ∗b tan β
. (3.5)

Here, Mrest
i stands for the part of the Feynman amplitude corresponding to the truncated

diagram. The expressions (3.4) and (3.5) are of order O(ǫFC tan β). Thus, if a large value

of tan β compensates for the small ǫFC, it is possible to get a b → s transition without

paying the price of a loop suppression.

There is one important physical process for which even diagrams with two self-energies

in external lines must be considered: in b → sγ the expansion of the diagrams to lowest

order in mb/MSUSY understood in eqs. (3.4) and (3.5) gives zero. One therefore has to

consider contributions of higher order in this ratio. This means that in eq. (2.3) the

right-hand side has to be expanded to order m2
b/M

2
SUSY in order to find the appropriate

counterterm δmb, whereas only the leading term was kept in section 2. We stress that

this expansion does not spoil the resummation of the counterterm. Now let us have a

look at the b → sγ-diagrams in figure 6. We observe that an insertion of δmb like in

the lower-left diagram (denoted by a cross) cancels only partially with a corresponding

flavour-conserving self-energy insertion like in the upper-left diagram if we perform an on-

shell calculation of the amplitude. The reason is that δmb in eq. (2.3) is determined at

p2 = m2
b while the self-energy is probed at p2 = 0. The remnant is of order O(m2

b/M
2
SUSY),

just as the contribution that we find from the vertex correction in the upper-right diagram.

For completeness, we mention that some non-tan β-enhanced contributions are canceled by

insertions of on-shell wave-function counterterms of the bottom quark like the one shown

in the lower-right diagram (also denoted by a cross). Summing up all the diagrams yields

a gauge-invariant result of the order (mb/MSUSY)2 ǫ∗FC tan2 β times another loop factor,

which is the same order as the leading supersymmetric one-loop contribution to b→ sγ.

It is natural to ask whether the above effect, i.e. the generation of tan β-enhanced b→ s

transitions via self-energy insertions, also occurs for internal quark lines. It is important

to notice that the tanβ-enhancement in eqs. (3.4) and (3.5) is generated by the fact that

the quark propagator −i/mb cancels a factor of mb in ΣRL
bs . A potential 1/mb-dependence

of some loop integral would originate from the low momentum region p2 ≪M2
SUSY, but we

have constructed the mass counterterm δmb in section 2.1 in such a way that it subtracts

the self-energy insertion in this momentum region. Therefore we only need to worry about

situations similar to b → sγ, in which higher orders of mb/MSUSY are relevant. However,

we are not aware of a meaningful physical process in which an internal b line is responsible

for a 1/mb singularity in this way and do not consider this possibility further.

Before investigating the further consequences of the tan β-enhanced flavour transitions,

we want to point out a subtlety of equation (3.5). The b-quark mass which enters the prop-

agator via the equation of motion is the pole mass mpole
b . The b-quark mass appearing in

ΣRL
bs , on the other hand, is the MS-mass mb. However, if QCD-corrections to the diagrams
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b
b
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γ
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Figure 6: Diagrams with self-energies in external lines for the process b→ sγ.

of figure 5 are taken into account, additional contributions add to the MS-mass in ΣRL
bs to

give the pole mass mpole
b . Therefore the b-quark mass correctly cancels from eq. (3.5). A

detailed analysis of this feature can be found in appendix B.

Now, let us consider the tanβ-enhanced corrections to the
dj

ui

dk

Wµ

Figure 7: Generic

enhanced correction

to Vij.

ui-dj-W -vertex (see figure 7). We apply an on-shell renormali-

sation condition to Vij and cancel the contribution from the self-

energy diagram at p2 = 0 by a counterterm δVij . In this way the

renormalised V corresponds to the CKM matrix measured from

low energy data.2 We find

δVij = −VikΛkj, with

Λkj(V ) =





mdj

m2
dj

−m2
dk

ΣLR
kj +

mdk

m2
dj

−m2
dk

ΣRL
kj , k 6= j

0 , k = j
(3.6)

Note that δVij never involves less powers of the Wolfenstein pa-

rameter λ than Vij . The bare CKM matrix V (0) reads

V (0) = V + δV = V (1 − Λ) ≈ V e−Λ. (3.7)

This shows that the chosen renormalisation condition preserves the unitarity of the CKM

matrix because the matrix Λ is anti-hermitian.

From eq. (3.1) we find that the corrections δVtd, δVts, δVub and δVcb are of order

O(ǫFC tan β) and so can be comparable in size to the corresponding tree-level quantities

Vij . Hence, the situation is the same as it was for the flavour-conserving self-energies

in section 2.1: reinsertion of the counterterms δVij into the diagram of figure 7 leads to

contributions which are formally of higher loop order but also of higher order in tanβ. To

resum these corrections we generalise eq. (3.6) to all orders in perturbation theory as

δVij = −(Vik + δVik) · Λkj(V + δV ), (3.8)

2Therefore our V corresponds to V eff of ref [35].
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which is in complete analogy with eq. (2.13) for the flavour conserving case. Note that

the enhanced flavour-conserving corrections associated with yb are already properly re-

summed in eq. (3.1) through the factor of 1/(1+ǫi tan β). We have two possibilities to deal

with eq. (3.8). Firstly, we can expand the r.h.s. order by order, deduce a recursive relation

between the CKM counterterms δV
(n)
ij and δV

(n−1)
ij and perform the resummation explicitly.

Secondly, we can add Vij to both sides of eq. (3.8) and solve the resulting matrix equation

V (0) = V − V (0) · Λ(V (0)) (3.9)

for V (0). Inserting Λkj(V
(0)) from eq. (3.6) with ΣRL

ij = ΣLR∗
ji from eq. (3.1) into eq. (3.9)

yields

V
(0)
ij = Vij −

∑

k 6=j

V
(0)
ik V

(0)∗
tk V

(0)
tj

1

m2
j −m2

k

[
m2
jǫ

∗
FC tan β

1 + ǫ∗j tan β
+
m2
kǫFC tan β

1 + ǫk tan β

]
. (3.10)

Neglecting small quark mass ratios and ignoring the tiny corrections to the Cabibbo matrix

we obtain the solution

V (0) =



Vud Vus K∗Vub
Vcd Vcs K∗Vcb
KVtd KVts Vtb


 , with K =

1 + ǫb tan β

1 + (ǫb − ǫFC) tanβ
. (3.11)

We recognise that this amounts to a renormalisation of the Wolfenstein parameter A,

A(0) =

∣∣∣∣
1 + ǫb tan β

1 + (ǫb − ǫFC) tan β

∣∣∣∣ A. (3.12)

Possible complex phases can be absorbed by the usual rephasing of the top-quark and

bottom-quark fields (with the same phase for the left- and right-handed fields). In order

to preserve supersymmetry, one should then perform the same rephasing also for the stop

and sbottom fields.

Comparing eq. (3.11) to results of calculations in effective-theory approaches [23, 25,

35, 36], where the SUSY particles are integrated out at a scale much higher than the

electroweak scale, we see that the results are identical in the limit MSUSY ≫ v, as they

should be. Yet our result eq. (3.11) provides an explicit resummation of the tan β-enhanced

flavour-changing effects to all orders in perturbation theory and is also valid in the case

where the SUSY mass-scale is similar to the electroweak scale.

3.2 Renormalisation of the flavour-changing self-energies

The second possibility to deal with flavour-changing self-energies is to absorb them into

wave-function counterterms. In this approach, no external-leg corrections have to be taken

into account in the calculation of transition amplitudes. Instead, the effect of flavour-

changing self-energies now resides in the wave-function counterterms, which enter the vari-

ous couplings of the quark fields. In particular, the wave-function counterterms render cou-

plings which are flavour-diagonal at tree-level flavour-changing. Furthermore, this method
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permits an easy incorporation of the resummed tanβ-enhanced effects into explicit Feyn-

man rules for the MSSM. These Feynman rules are collected in appendix C and can be

readily implemented into computer programs like FeynArts [49, 50]. They include for ex-

ample flavour-changing gluino couplings, which have previously been found by Degrassi,

Gambino and Slavich in ref. [51]. We will see that these counterterm couplings are indeed

enhanced by a factor of tan β and therefore determine them to all orders in the perturbative

expansion, which has not been done in ref. [51]. The scope of ref. [51] is the calculation

of the supersymmetric strong corrections to b → sγ for all values of tan β, while we are

interested in the leading power of tan β only, albeit to all orders in perturbation theory

and with the effects of all gauge couplings and of the large Yukawa couplings yt and yb.

We next present the flavour-changing wave-function counterterms and reproduce the

result for the renormalised CKM matrix of the previous section: the renormalisation of the

CKM matrix with the help of wave-function counterterms has been first studied by Denner

and Sack in ref. [52] for the Standard Model, where an on-shell scheme has been chosen.

That is to say, the wave-function counterterms have been defined in a proper way to cancel

flavour-changing self-energies when one of the external quarks is put on the mass shell.

Later Gambino, Grassi and Madricardo [53] have argued that this on-shell prescription

can lead to gauge-noninvariant results and have given a renormalisation prescription for

the flavour-changing two-point functions at zero external momentum p. As long as we

neglect the external momenta in the calculation of the SUSY self-energy diagrams, there

is no difference between the two approaches and the naive on-shell subtraction of flavour-

changing self-energies in external quark legs gives gauge invariant results. Only chirality-

flipping self-energies ΣRL
ij in the down sector are tan β-enhanced. Therefore only down-

quark fields have to be renormalised according to

d
(0)
i,L =

(
δij +

1

2
δZLij

)
dj,L, d

(0)
i,R =

(
δij +

1

2
δZRij

)
dj,R (3.13)

and their wave-function counterterms are anti-hermitian:

δZLij = −δZL∗ji , δZRij = −δZR∗ji . (3.14)

The wave-function renormalisation (3.13) corresponds to a unitary transformation of the

down-type quark fields in flavour space. We will see in the following that this implies,

in combination with a suitable renormalisation of the CKM matrix, that couplings of the

Standard-Model particles to one another are unaffected by our renormalisation. In this

way, no flavour violation occurs in the couplings of the photon, of the Z0 boson, or of the

gluon, as required by the decoupling theorem.

The rotation of the quark fields in eq. (3.13) affects the down-quark mass terms of the

Lagrangian (cf. eq. (2.1)) as

Lm = − m
(0)
dj
d
(0)
j,Rd

(0)
j,L+h.c. = −

[
m

(0)
dj
δjk +

1

2
m

(0)
dj
δZLjk −

1

2
m

(0)
dk
δZRjk

]
dj,Rdk,L+h.c. (3.15)
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diR

χ̃−

d
j
L

t̃, c̃, ũ

diR

g̃, χ̃0

d
j
L

d̃i

diR

χ̃−

d
j
L

t̃, c̃, ũ

diR

g̃, χ̃0

d
j
L

d̃j

diR

χ̃−

d
j
L

t̃, c̃, ũ

Figure 8: Higher-order tanβ-enhanced contributions to ΣRL
ij .

Subtraction of the flavour-changing self-energies at vanishing external momentum amounts

to the condition

ΣRL
ij +m

(0)
di

δZLij
2

−m
(0)
dj

δZRij
2

= 0, i 6= j, (3.16)

for δZL,Rij with ΣRL
ij given in (3.1). Here the bare masses m

(0)
di

= mdi
+ δmdi

contain

the tanβ-enhanced corrections associated with the mass counterterms δmdi
calculated in

section 2.1.

The explicit expressions for the anti-hermitian one-loop counterterms in our scheme

follow directly from the condition (3.16) and its complex-conjugate version. We find

δZLij
2

=
m

(0)∗
di

ΣRL
ij +m

(0)
dj

ΣLR
ij

|m(0)
dj

|2 − |m(0)
di

|2
for i 6= j. (3.17)

δZRij
2

=
m

(0)
di

ΣLR
ij +m0∗

dj
ΣRL
ij

|m(0)
dj

|2 − |m(0)
di

|2
for i 6= j. (3.18)

From these formulae it is obvious that the counterterms δZL,Rij are tan β-enhanced. How-

ever, the strong hierarchy of the quark masses implies that δZRij is always suppressed by a

small ratio of masses whereas δZLij is not.

We want to stress that in the expression for ΣRL
ij in eq. (3.1) the momenta of the

external quarks are neglected. As a consequence self-energies in external quark lines are

subtracted by the counterterms δZL,Rij only up to terms suppressed by the small ratio

mdi
/MSUSY. Therefore in calculations where higher order terms in the momentum ex-

pansion are relevant one has to take into account the corresponding one-particle-reducible

diagrams explicitly. One example for such a process is b→ sγ.

Up to now we have considered the flavour-changing self-energies only at the one-loop

level. Are there also higher loop contributions which are tan β-enhanced? In the flavour-

conserving case such contributions stem from insertions of the counterterm δyb into the self-

energy diagrams and are already included in eq. (3.1). To study the new flavour-changing

effects let us now consider self-energy diagrams with wave-function counterterms δZLij and

δZRij at vertices involving a gluino, a chargino, or a neutralino. These diagrams generate

further contributions to ΣRL
ij (see figure 8). The resulting diagrams are tan β-enhanced and

of the same order in the Wolfenstein parameter λ as the original flavour-changing chargino

diagram. Formula (3.1) for ΣRL
ij is then generalised to all orders in perturbation theory as

ΣRL
ij (δZLij , δZ

R
ij ) = V

(0)∗
ti V

(0)
tj m

(0)
di
ǫFC tan β +

δZLij
2
m

(0)
di
ǫi tan β −

δZRij
2
m

(0)
dj
ǫj tan β. (3.19)
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In writing V
(0)
ij we have anticipated that the CKM elements will obtain tan β-enhanced

counterterms which then also should be included into the self-energies. Replacing ΣRL
ij and

ΣLR
ij in eqs. (3.17) and (3.18) by ΣRL

ij (δZLij , δZ
R
ij ) and ΣLR

ij (δZLij , δZ
R
ij ) gives us equations

for the determination of the wave-function counterterms which are valid to all orders in the

perturbative expansion. Again, they can be solved either order-by-order through explicit

resummation or simply by solving the coupled equations for the resummed counterterms

δZL,Rij obtained by inserting eq. (3.19) into eqs. (3.17) and (3.18). For i = d, s we find to

leading order in mdi
/mb:

δZLbi
2

= −δZ
L∗
ib

2
= − ǫFC tan β

1 + ǫb tan β
V

(0)∗
tb V

(0)
ti , (3.20)

δZRbi
2

= −δZ
R∗
ib

2
= −mdi

mb

[
ǫFC tan β

1 + ǫb tan β
+

ǫ∗FC tan β

(1 + ǫ∗i tan β)

]
V

(0)∗
tb V

(0)
ti . (3.21)

The elements of δZL,Rij which do not involve the third generation vanish.

Now we can renormalise the CKM matrix with the help of the resummed left-handed

wave-function counterterms, using the prescription of ref. [52] and neglecting the up-type

counterterms:

δVij = −
∑

k

V
(0)
ik

δZLkj
2

(3.22)

On the right-hand side we have again replaced Vik by V
(0)
ik to properly account for the

enhanced higher-order effects.

The resummed CKM counter-terms fixed by this condition exactly cancel the effect

of the field renormalisation of the down-type quarks in their couplings to the W boson so

that only the tree-level coupling survives. We can now insert eq. (3.20) into eq. (3.22) and

(using V
(0)
ij = Vij + δVij) solve for δVij . We obtain the same relation between V

(0)
ij and Vij

as found in eq. (3.11) with the method of the previous section. We may now express δZL,Rbi

in terms of the physical CKM elements: inserting eq. (3.11) into eqs. (3.20) and (3.21) gives

δZLbi
2

= −δZ
L∗
ib

2
= −V ∗

tbVti
ǫFC tan β

1 + (ǫb − ǫFC) tan β
, (3.23)

δZRbi
2

= −δZ
R∗
ib

2
= −V ∗

tbVti
mdi

mb

[
ǫFC tan β

1 + ǫb tan β
+

ǫ∗FC tan β

(1 + ǫ∗i tan β)

]
1 + ǫb tan β

1 + (ǫb − ǫFC) tan β
. (3.24)

The renormalisation of the CKM matrix beyond the decoupling limit has also been studied

in the second chapter of ref. [35], where an iterative procedure has been used to incorporate

the tanβ-enhanced higher-order corrections. We find that our unitary transformations in

eqs. (3.13) and (3.14) are formally equivalent to this procedure. Our result in eq. (3.23) is

the analytic expression for the limit to which the iterative calculation of ref. [35] converges.

To summarise, in the previous section we found tan β-enhanced b → s (b → d) tran-

sitions from self-energy insertions into external legs of Feynman diagrams. In the ap-

proach used in this section these self-energy insertions are absorbed into the wave-function

counterterms.
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3.3 Formulation of Feynman rules for the large-tan β scenario

We are now in a position to study the influence of tanβ-enhanced flavour transitions on

MSSM vertices by means of the counterterms defined above. In particular, we can give

Feynman rules for the large-tan β framework in which the enhanced loop corrections are

included and resummed to all orders.

First of all, as already stated above, we have chosen a renormalisation scheme such

that the standard-model vertices remain unaffected by enhanced corrections. In the cou-

plings of quarks to the neutral gauge bosons, the wave-function counterterms drop out by

means of their antihermiticity. The W boson couplings are indeed affected by the field

renormalisation but the renormalised CKM matrix is defined such that the coupling is

given only by a physical matrix element Vij . As an example, the coupling of the W to top-

and strange-quark reads

− ig√
2
γµPL

(
Vts + δVts + Vtb

δZLbs
2

)
= − ig√

2
γµPLVts. (3.25)

Since we renormalise only the quark fields and not their superpartners, we cannot

expect that the SUSY equivalents of standard-model vertices follow the same pattern. This

is inevitable since the flavour-changing effects which we want to include in our Feynman

rules arise from the SUSY-breaking sector (see section 3). The most striking example for

this property is the misalignment between the flavour-diagonal quark-gluon vertices and

the quark-squark-gluino couplings which receive flavour-changing contributions. From the

unitary transformations in eq. (3.13) we can read off e.g.

L ⊃ −i
√

2gsT
a b̃∗Lg̃

ab
(0)
L = −i

√
2gsT

a b̃∗Lg̃
a

(
bL +

δZLbs
2

sL +
δZLbd

2
dL

)
, (3.26)

which implies the existence of a flavour-violating gluino coupling to a sbottom and a down-

(strange-) quark via the tanβ-enhanced counterterm δZLbd(s). In the approach of section 3.1,

these corrections would arise via tan β-enhanced flavour-changing self-energies in the ex-

ternal quark line.

In addition to the gluino couplings, also chargino-, neutralino- and Higgs-couplings

to quarks are affected by tanβ-enhanced corrections. Moreover, the bare CKM factors in

various flavour-changing squark couplings (not involving quarks) have to be related to their

physical counterparts by means of eq. (3.11). We summarise all these effects in explicit

Feynman rules for the large-tan β scenario in appendix C. These rules are useful for

• calculations of low-energy processes involving virtual SUSY particles and

• calculations in collider physics with external SUSY particles.

As an example, we give here the result for a flavour-changing gluino decay. In the approx-

imation mb/MSUSY ≈ 0, the decay rate of g̃ → b̃i b is at tree-level

Γ(g̃ → b̃i b) =
αs
8π

(m2
g̃ −m2

b̃i
)2. (3.27)
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For the flavour-violating decay g̃ → b̃i s, we find

Γ(g̃ → b̃i s)

Γ(g̃ → b̃i b)
=

∣∣∣∣
δZLbs

2
R̃bi1

∣∣∣∣
2

+

∣∣∣∣
δZRbs

2
R̃bi2

∣∣∣∣
2

≈
∣∣∣∣
δZLbs

2
R̃bi1

∣∣∣∣
2

. (3.28)

Numerically, this ratio is given by

∣∣∣∣
ǫFC tan β

1 + (ǫb − ǫFC) tan β

∣∣∣∣
2

|VtbVts|2
∣∣∣R̃bi1

∣∣∣
2
∼ O(10−4). (3.29)

4 Phenomenology: FCNC processes

With the knowledge from the previous sections one can now study the effects of tan β-

enhanced SUSY corrections in FCNC processes. It is well known that even under the

MFV assumption, supersymmetric contributions to FCNC observables in B physics can be

sizeable if tan β is large. The most prominent example is the rare decay Bs → µ+µ−, in

which the supersymmetric contribution can largely exceed the Standard-Model rate and can

saturate the experimental bound [23, 24, 34–36, 41]. In this section we apply the effective

Feynman rules for the large-tan β scenario listed in appendix C to FCNC processes.

Most importantly, in this scenario flavour-changing transitions are no longer mediated

exclusively by W bosons, charged Higgs particles and charginos but also by neutral Higgs

particles, gluinos and neutralinos. For the case of the neutral Higgs bosons, this fact has

been realised first in the framework of the effective 2HDM valid for MSUSY ≫ v [22].

With our effective Feynman rules, we can on the one hand calculate the neutral Higgs

contributions to FCNC processes for the case MSUSY ∼ O(v) and on the other hand derive

contributions from other neutral virtual particles, where we will restrict the discussion to

gluinos and neglect the weakly interacting neutralinos.

Since all the flavour-violating neutral couplings are generated by tan β-enhanced flavour-

changing self-energies (or equivalently by the counterterms δZLbi and δZRbi (i = d, s) from

section 3.2), their numerical importance crucially depends on the parameter ǫFC tan β. Since

δZRbi is suppressed by a small ratio of quark masses, the most important new contributions

are proportional to δZLbi in eq. (3.23) and thus to the parameter combination

ǫFC tan β

1 + (ǫb − ǫFC) tan β
. (4.1)

It is thus useful to have a first estimate of the size of this parameter. For this purpose,

we neglect the weak contributions to ǫb and ǫFC, focus on the non-decoupling part of

expressions (2.9) and (3.3) for ǫg̃b and ǫFC and set all the SUSY mass parameters as well as

|µ| and |At| equal to a single mass scale MSUSY. In this case, the mass dependence drops

out and we find

|ǫFC tan β| =
yt(MSUSY)2

32π2
tan β, (4.2)

|(ǫb − ǫFC) tan β| = |ǫg̃b tan β| =
αs(MSUSY)

3π
tan β. (4.3)
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For tanβ = 50 and MSUSY = 500 GeV, we find typical numerical values of

|ǫFC tan β| ∼ 0.12, |(ǫb − ǫFC) tan β| ∼ 0.5 . (4.4)

Taking µ real here the parameter combination in eq. (4.1) evaluates to

∣∣∣∣
ǫFC tan β

1 + (ǫb − ǫFC) tan β

∣∣∣∣ ∼ 0.08, for positive µ, (4.5)

∣∣∣∣
ǫFC tan β

1 + (ǫb − ǫFC) tan β

∣∣∣∣ ∼ 0.24, for negative µ. (4.6)

Values larger than this for ǫFC and thus for the combination (4.1) occur if |At| is significantly

larger than the masses of stops and charginos. If one requires |At| . 3mq̃ (where mq̃ is an

average squark mass) to avoid colour-breaking minima [54, 55], ǫFC tan β gets constrained

to |ǫFC tan β|max ∼ 0.4. Experimentally, the size of At is further limited by B(B → Xsγ)

via the tanβ-enhanced chargino contribution to this process. However, when the complex

phase of At is taken into account, this bound is much weaker [56]. Moreover, this bound

from B(B → Xsγ) may shift when the gluino contribution, which a priori is expected to

be of order |ǫFC tan β| times the chargino contribution, is taken into account.

4.1 The effective |∆B| = 1 Hamiltonian

Weak |∆B| = |∆S| = 1 decays are usually described by an effective Hamiltonian

Heff = −4GF√
2
VtbV

∗
ts

∑

i

CiOi + h.c. (4.7)

In the SM the operator basis for radiative and hadronic B decays consists of the four quark

operators

O1 = (s̄αγµPLcβ)(c̄βγ
µPLbα) O2 = (s̄αγµPLcα)(c̄βγ

µPLbβ) (4.8)

O3 = (s̄αγµPLbα)
∑

q

(q̄βγ
µPLqβ) O4 = (s̄αγµPLbβ)

∑

q

(q̄βγ
µPLqα) (4.9)

O5 = (s̄αγµPLbα)
∑

q

(q̄βγ
µPRqβ) O6 = (s̄αγµPLbβ)

∑

q

(q̄βγ
µPRqα) (4.10)

and the magnetic and chromo-magnetic operators

O7 =
e

16π2
mb(s̄σ

µνPRb)Fµν O8 =
gs

16π2
mb(s̄σ

µνT aPRb)G
a
µν . (4.11)

In the MSSM with large tanβ flavour-changing couplings of the neutral Higgs bosons to

the down-type quarks are generated. For this reason the operator basis has to be extended

to include four quark operators with scalar, pseudoscalar and tensor structure, namely

Oq
11 = (s̄αPRbα)(q̄βPLqβ) Oq

12 = (s̄αPRbβ)(q̄βPLqα) (4.12)

Oq
13 = (s̄αPRbα)(q̄βPRqβ) Oq

14 = (s̄αPRbβ)(q̄βPRqα) (4.13)

Oq
15 = (s̄ασ

µνPRbα)(q̄βσµνPRqβ) Oq
16 = (s̄ασ

µνPRbβ)(q̄βσµνPRqα). (4.14)
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Note that the operators Oq
11 . . .O

q
16 are not linearly independent for q = b or q = s.

In theses cases Oq
15 and Oq

16 can be expressed as linear combinations of the remaining

operators using Fierz identities. We have checked that these operators have a negligible

impact on radiative decays. The same feature was found for hadronic two-body decays in

ref. [57]. The effective Hamiltonian for |∆B| = |∆D| = 1 processes can be found from the

|∆B| = |∆S| = 1 one by the replacement s→ d.

Let us now have a look at SUSY contributions to the Wilson coefficients of the operators

O7 and O8: in the SM O7,8 involves a chirality flip in the external b-quark leg so that C7,8

is proportional to mb ∝ cos β. Therefore SUSY contributions can be tan β-enhanced with

respect to the SM amplitude if the chirality flip stems from a factor of yb in the loop. At the

one-loop level the well-known contributions growing with tan β are loops with charginos and

up-type squarks. In this context often also the diagrams involving a charged Higgs boson

and a top quark are discussed. These contributions are not tan β-enhanced due to the cos β-

suppression of the charged-Higgs coupling to the right-handed top. Since this coupling has

vertex-corrections proportional to sinβ, such diagrams require a different treatment and

are not discussed here. They have been studied by various authors either in an effective-

field-theory approach [38, 39, 58, 59] or in an explicit two-loop calculation [51]. Here we

firstly focus on the chargino contribution. Using our effective Feynman rules we find

C7,8,eχ± =
1

cos β(1 + ǫ∗b tan β)

∑

a=1,2

{
Ũa2Ṽa1MW√

2m
eχ±

a

[
K∗f1,2(xq̃ eχ±

a
) − c2

t̃
f1,2(xt̃1 eχ±

a
)

−s2
t̃
f1,2(xt̃2 eχ±

a
)
]

+ st̃ ct̃ e
−iφt̃

Ũa2 Ṽa2mt

2 sin βm
eχ±

a

[
f1,2(xt̃1 eχ±

a
) − f1,2(xt̃2 eχ±

a
)
]}

. (4.15)

with

st̃ = sin θ̃t, ct̃ = cos θ̃t, xij = mi/mj . (4.16)

All loop functions are given in appendix A.3. Again we have assumed that the squarks of the

first two generations are degenerate in mass and denoted their common mass by mq̃. Our

result differs from the one in [39] only by a factor of K∗ (defined in eq. (3.11)) in the numeri-

cally small up and charm squark contribution. The stop contribution remains unaffected be-

cause the corrections from the wave function and the CKM counterterm cancel each other.

Besides the well-known chargino and charged-Higgs diagrams, there are now tan β-

enhanced gluino-sbottom diagrams contributing to C7 and C8 (figure 9), which have never

been discussed before in the context of minimal flavour-violation at large tan β. Like the

chargino diagrams these contributions vanish for MSUSY ≫ v, but can be computed with

proper resummation of the enhanced corrections within our framework.

The tan β-enhanced parts read

C7,g̃ =

√
2

4GF

CF g
2
sµ tan β

3mg̃(m2
b̃1
−m2

b̃2
)

ǫ∗FC tan β

(1 + ǫ∗b tan β)
(
1 + (ǫ∗b − ǫ∗FC) tan β

)
(
f2(xb̃1g̃) − f2(xb̃2g̃)

)
,

(4.17)
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b s

χ̃

ũ, c̃, t̃

γ

b s

γ

b s

g̃

b̃
γ

δZL∗
bs

Figure 9: Gluino and chargino diagrams contributing to C7. The photon can couple to

any particle except for the gluino. The contributions to C8 are found by replacing the

photon by a gluon (which can also couple to the gluino).

C8,g̃ = −
√

2

4GF

g2
sµ tan β

mg̃(m2
b̃1
−m2

b̃2
)

ǫ∗FC tan β

(1 + ǫ∗b tan β)
(
1 + (ǫ∗b − ǫ∗FC) tan β

)

×
[
CF

(
f2(xb̃1g̃) − f2(xb̃2g̃)

)
+ CA

(
f3(xb̃1g̃) − f3(xb̃2g̃)

)]
. (4.18)

The arguments of the loop functions are again given by xab = m2
a/m

2
b , the colour factors

are CF = 4/3 and CA = 3. We remark that the diagram with a gluino and a strange squark

in the loop has been neglected because its amplitude is suppressed by the strange-quark

mass. To have a rough estimate of the size of C7,8,g̃ compared to C7,8,eχ± we again set all

SUSY masses (including |µ| and |At|) to the same value MSUSY. In this case we find

η7 =

∣∣∣∣
C7,g̃

C7,eχ±

∣∣∣∣ =
8

15

g2
s

y2
t

|ǫ∗FC tan β|
|1 + (ǫ∗b − ǫ∗FC) tanβ| , η8 =

∣∣∣∣
C8,g̃

C8,eχ±

∣∣∣∣ =
10

3

g2
s

y2
t

|ǫ∗FC tan β|
|1 + (ǫ∗b − ǫ∗FC) tan β| .

(4.19)

Using our estimates for expression (4.1) we find η7 ∼ 0.07 and η8 ∼ 0.42 for positive values

of µ and η7 ∼ 0.2 and η8 ∼ 1.3 for negative values of µ. It follows that the impact of the

gluino contribution on C7 is small (especially for positive µ) whereas the contribution to

C8 can be sizeable. Above we argued that the value of |ǫFC tan β| can be increased up to

|ǫFC tan β| ∼ 0.4 if we choose large values for |At|. Of course, the size of C7,8,g̃ gets larger

for increasing values of |ǫFC tan β|. Note, however, that C7,8,eχ± is proportional to At and

thus the ratio η7,8, i.e. the relative importance of the gluino contribution, is essentially

unaffected. On the other hand, the gluino contribution grows with increasing |µ| whereas

the chargino contribution decreases because it decouples with the chargino mass. Therefore

for large values of |µ| the gluino contribution becomes more important. We will perform a

more detailed numerical study of the new coefficients C7,g̃ and C8,g̃ in section 5.

Replacing in figure 9 the gluino by a neutralino, we find tan β-enhanced neutralino

contributions to the (chromo-)magnetic operators. Their analytic expression reads

C7,χ̃0 = −
√

2

4GF

∑

i,m

ǫ∗FC tan β

6mχ̃0
m
mb

(
1 + (ǫ∗b − ǫ∗FC) tan β

)XL∗
imX

R
imf2(xb̃iχ̃0

m
) , C8,χ̃0 = 1/ed C7,χ̃0

(4.20)
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with the neutralino-quark-squark couplings

XL
im =

√
2R̃bi1

(
g

2
Ñ∗
m2 −

g′

6
Ñ∗
m1

)
− y

(0)
b R̃bi2Ñ

∗
m3 , XR

im =

√
2

3
g′R̃bi2Ñm1 + y

(0)∗
b R̃bi1Ñm3.

(4.21)

In our convention, ed = −1/3 is the charge of the down-type (s)quarks. The bare Yukawa

coupling y
(0)
b is determined as explained in section 2.2. We remark that in the product

XL∗
imX

R
im, additional factors of tanβ from sbottom-mixing and from y

(0)
b are hidden, but

nevertheless we find the neutralino contributions to be numerically small compared to their

counterparts from chargino and gluino diagrams.

Another one-loop contribution to C7,8, stemming from virtual neutral Higgs-bosons,

has been presented in [7] in the effective-Lagrangian approach with vanishing SUSY CP-

phases. In a full diagrammatic calculation, we find for these coefficients

C7,H0 = − ǫ∗FC tan β

1 + (ǫ∗b − ǫ∗FC) tan β

m2
b tan2 β

36|1 + ǫb tan β|2m2
A0

, C8,H0 =
CH

0

7

ed
. (4.22)

In the decoupling limit, setting all SUSY phases to zero, this agrees with [7] up to the factor

1/ed. Compared to the other contributions from SM and MSSM particles, corrections from

neutral-Higgs diagrams to C7,8 are at most in the few-percent range.

In the following, let us leave the magnetic and chromomagnetic operators and discuss

the remaining parts of the effective Hamiltonian. For the QCD-penguin operators O3−6,

we find contributions from gluino and neutralino loops to be small because of destructive

interference of the two occurring internal squark flavours b̃ and s̃. This is a remarkable

difference to chargino loops, where this GIM-like cancellation is rather inefficient between

the up-type squarks due to their very different Yukawa couplings. Furthermore, the usual

power-suppression m2
b/M

2
SUSY is present and cannot be alleviated by a factor of tan β from

the loop since no chirality flip is involved, in contrast to O7,8.

In the semileptonic decay B̄ → Xsℓ
+ℓ−, two semileptonic operators usually denoted

by O9 and O10 come into play. Chargino- and charged Higgs-diagrams contributing to

these operators have been evaluated in [60] (we refer to this publication for the definition

of O9,10) and it has been found that the corrections to the SM coefficients are small. Due

to the GIM-like suppression described above, we find gluino and neutralino corrections to

be even smaller.

The charged leptonic B decays B+
q → ℓ+νℓ (q = d, s) are dominated by tree-level

diagrams with W boson, but may receive sizeable contributions from charged-Higgs ex-

change in the MSSM [27]. The charged Higgs boson couples to a right-handed b quark

and (neglecting yd and ys) the only effect of tan β-enhanced corrections stems from K

in eq. (3.11) and ǫb tan β in the Yukawa coupling in eq. (2.17). The corresponding Feyn-

man rule is given in eq. (C.7). The same remark applies to the other charged-Higgs analyser

B → Dτντ [28, 29].

Their neutral counterparts B0
q → ℓ+ℓ− are loop-mediated, with a dramatic impact

of a large value of tanβ. The phenomenologically most important decay in this class,
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B0
s → µ+µ−, is described by the effective Hamiltonian

Heff = −4GF√
2
V ∗
tsVtb

∑

i=A,S,P

CiOi + h.c. (4.23)

with the operators

OA = (s̄γνPLb)(µ̄γ
νγ5µ) (4.24)

OS = mb(s̄PLb)(µ̄µ) (4.25)

OP = mb(s̄PLb)(µ̄γ5µ). (4.26)

At large tan β, neutral Higgs exchange is known to be dominant since it occurs at

tree-level in the effective theory at the electroweak scale [23], contributing to CS and

CP .3 Making use of the flavour-changing neutral Higgs couplings from appendix C, we can

generalise the results in the literature to formulae which

• resum all tan β-enhanced mass- and wave-function renormalisation effects

• contain all possible complex phases from the SUSY breaking sector and

• do not resort to the decoupling limit MSUSY ≫ v.

Since the LHCb detector may soon precisely measure the Bs → µ+µ− branching fraction,

an improved treatment of the SUSY contribution to this decay is desirable now. With

m2
H0 = m2

A0 in the large-tan β limit, this Higgs-mediated contribution reads4

CS = −CP = − ǫ∗FC tan β

1 + (ǫ∗b − ǫ∗FC) tan β

mµ tan2 β

(1 + ǫ∗b tan β)(1 + ǫµ tan β)2m2
A0

. (4.27)

Here ǫµ is the analogue of ǫb for the muon (see e.g. [36, 42]).

4.2 The effective |∆B| = 2 Hamiltonian

In order to study the effects of tanβ-enhanced flavour transitions in B− B̄ oscillations, we

write the ∆B = 2 effective Hamiltonian as

Heff =
G2
Fm

2
W

16π2
(V ∗
tbVtq)

2
∑

i

CiOi (4.28)

with q = d, s. The dimension-six operators Oi are

OV LL = (b̄γµPLq)(b̄γ
µPLq), (4.29)

OLR
1 = (b̄γµPLq)(b̄γ

µPRq), (4.30)

OLR
2 = (b̄PLq)(b̄PRq), (4.31)

OSLL
1 = (b̄PLq)(b̄PLq), (4.32)

OSLL
2 = (b̄σµνPLq)(b̄σ

µνPLq) (4.33)

3The tanβ-enhancement was found in a diagrammatic one-loop calculation in ref. [41].
4If tanβ is small, Z-penguin and box diagrams become important. These contributions can be found in

ref. [61].
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and OV RR,OSRR
1 ,OSRR

2 which are obtained by replacing PL by PR.

Various contributions to B−B mixing have been obtained in the effective-theory

approach in refs. [22, 30, 33–36]. We specify to Bs−Bs mixing, which involves numerically

important contributions proportional to ms [30]. The first type of contributions to the

Wilson coefficients of these operators which we want to consider are diagrams with neutral

Higgs exchange analogous to the Bs → µ+µ− diagram in the previous subsection. With

our Feynman rules we find

CSLL1 = − 16π2m2
b tan2 β√

2GFM
2
W

· ǫ2FC tan2 β

(1 + ǫb tan β)2 (1 + (ǫb − ǫFC) tan β)2
· F−, (4.34)

CLR2 = − 32π2mbms tan2 β√
2GFM2

W

· |ǫFC tan β|2
|1 + ǫb tan β|2 |1 + (ǫb − ǫFC) tan β|2

· F+

×
[
1 + (1 − e2iφ)

(ǫ∗b − ǫ∗FC − ǫ∗s) tan β

1 + ǫ∗s tan β

]
(4.35)

with φ = arg {ǫFC tan β (1 + (ǫ∗b − ǫ∗FC) tan β)} . (4.36)

Up to terms suppressed by tan−1 β, we obtain here

F+ =
2

m2
A0

, F− = 0. (4.37)

The contribution from the operator OLR
2 is thus important despite its suppression by

ms since F− vanishes at large tan β [22]. Our result for CLR2 involves the new term

r = (1 − e2iφ)
(ǫ∗b − ǫ∗FC − ǫ∗s) tan β

1 + ǫ∗s tan β
. (4.38)

Obviously this correction factor r disappears if all parameters are real. It also vanishes if

we go to the decoupling limit and choose all squark mass terms to be equal because in this

case we have

ǫs → ǫ0, ǫb → ǫ0 + ǫFC. (4.39)

For this reason the r-term is absent in [22, 30, 33–36]. Beyond the decoupling limit r

does not vanish even if we set all SUSY-breaking mass terms to the same value because

the squark masses are split due to electro-weak symmetry breaking. However, this effect

is tiny for µ > 0 where the correction factor 1/(1 + ǫb tan β) to the Yukawa coupling

suppresses the off-diagonal element Xb̃ = −y(0)∗
b vuµ in the sbottom mass matrix. In this

case we have |r| . 0.01. For µ < 0 the off-diagonal element Xb̃ is enhanced and we have

|r| . 0.1. Significantly larger values for r can be achieved if we allow the squark masses of

the third generation to be different from those of the first two generations.5 In this case the

new term can be important for mixing-induced CP asymmetries, because |CSLL1 | is much

smaller than |CLR2 | (even after loop corrections to F− in eq. (4.37) are included [36]) and

the imaginary part of CLR2 in eq. (4.35) stems solely from r. A benchmark measurement

5It should be stressed that this is possible for the right-handed bilinear mass terms but not for the

left-handed ones: in the super-CKM basis one has em2
dL

= V (0)†
em2

uL
V (0) and the naive MFV hypothesis of

diagonal em2
dL

, em2
uL

matrices therefore implies em2
uL,dL

∝ 1.

– 29 –



J
H
E
P
1
0
(
2
0
0
9
)
0
8
1

s

b s̃, b̃

s̃, b̃ b
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s̃, b̃

g̃g̃

b

s

g̃ g̃

Figure 10: Gluino-box diagrams contributing to the ∆B = 2 Hamiltonian. Two further

diagrams are obtained by 90◦ rotations.

of LHCb will be Amix
CP (Bs → (J/ψφ)CP±) which equals ∓0.04 ± 0.01 in the SM. In view of

the smallness of this SM prediction the new contribution involving Im r should be taken

into consideration. The same remark applies to the even smaller SM prediction of the CP

asymmetry in flavour-specific decays [48].

With our large-tan β Feynman rules we have further investigated the contributions to

the ∆B = 2 Hamiltonian from box-diagrams with virtual gluinos and down-type squarks

depicted in figure 10. We find that contributions to CLR1,2 , CV RR and CSRR1,2 are always

proportional to powers of δZRbs, thus suppressed by ms/mb. Contributions to CV LL and

CSLL1,2 are proportional to (δZLbs)
2, which is rather small as discussed at the beginning of

section 4, and furthermore suffer from destructive interference between the s̃ and b̃ con-

tributions. These suppression effects render gluino contributions to the ∆B = 2 Hamilto-

nian numerically negligible compared to other supersymmetric contributions like e.g. those

from charginos or neutral Higgs bosons. The same statement holds for the neutralino

box diagrams.

5 Numerical study of C7,g̃ and C8,g̃ and implications for B̄0
→ φKS

We have argued in the previous sections that at large tan β there can be potentially large

contributions to the coefficients of the (chromo-)magnetic ∆B = 1 operators O7 and O8

from SUSY-QCD. In order to have a clearer picture of this effect, we now present a numer-

ical study of the Wilson coefficients C7 and C8 and an application to the mixing-induced

CP asymmetry SφKS
.

As a first step, we have performed a general scan over the MSSM parameter space and

calculated the absolute values and phases of the various standard-model and supersymmet-

ric contributions to both C7 and C8. Our ranges for the dimensionful MSSM parameters

are given in table 1. We vary the phase of At between 0 and 2π and tanβ between 40 and

60. In this section we further take µ real and positive. Only parameter points compatible

with the following constraints have been accepted:

• All squark masses are larger than 200 GeV.

• The lightest supersymmetric particle (LSP) is charge- and color-neutral.

• The experimental 2σ-bound on the lightest Higgs-boson mass is respected.
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min (GeV) max (GeV)

m̃QL
, m̃uR

, m̃dR
250 1000

|At|, |Ab| 100 1000

µ, M1, M2 200 1000

M3 300 1000

mA0 200 1000

Table 1: Scan ranges used for massive MSSM parameters.

200-400 400-600 600-800 800-1000

Μ HGeVL

0.00 0.05 0.10 0.15 0.20 0.25 0.30
È C7

c
È0.00

0.05

0.10

0.15

0.20

0.25

0.30

È C7
g
È

0.00 0.05 0.10 0.15 0.20 0.25
È C8

c
È0.00

0.05

0.10

0.15

0.20

0.25

È C8
g
È

Figure 11: Magnitudes of chargino and gluino contributions to C7(µSUSY) and C8(µSUSY)

scanned over the MSSM parameter space.

• B(B → Xsγ) is in the experimental 2σ-range.

For the last constraint, B(B → Xsγ) has been calculated according to eq. (20) of ref. [62].

This results in a severe limitation for large values of |At| since B(B → Xsγ) is dominated

by C7, which receives substantial SUSY corrections if both |At| and tanβ are large [63]. In

view of this fact, the question arises how a complex At should be treated. It is often possible

to fine-tune its phase in such a way that the sum of a very large SUSY correction to C7

and the standard model value is still compatible with the measurements of B(B → Xsγ).

We have decided to consider such a fine-tuning as unnatural and thus impose another

constraint on our scan points.

• We reject all points yielding a SUSY correction
∣∣CSUSY

7 (mW )
∣∣ >

∣∣CSM
7 (mW )

∣∣ ≈ 0.22
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0.28 0.30 0.32 0.34 0.36 0.38
È C7

old
È

0.28

0.30

0.32

0.34

0.36

0.38

È C7
new
È

-0.6 -0.4 -0.2 0.2 0.4 0.6
argH-C7

old
L

-0.6

-0.4

-0.2

0.2

0.4

0.6

argH-C7
new
L

0.14 0.16 0.18 0.20 0.22 0.24
È C8

old
È0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

È C8
new
È

-0.5 0.5
argH-C8

old
L

-0.5

0.5

argH-C8
new
L

Figure 12: Magnitudes and phases of C7(mb) and C8(mb) scanned over the MSSM pa-

rameter space. The meaning of the colours is the same as in figure 11. For further details

see text.

The results of the scan are depicted in figures 11 and 12. The plot in figure 11

is a comparison of the numerical importance of the well-known chargino contributions

C7,8,χ̃±(µSUSY) on the one hand and the new gluino contribution C7,8,g̃(µSUSY) on the other

hand. We show the absolute values of these (complex) Wilson coefficients. The picture

confirms our rough estimate in eq. (4.19), i.e. it shows that the gluino contribution to C7 is

accidentally suppressed, whereas it is enhanced for C8 and can yield sizeable corrections,

especially for large values of |µ|. The different colours of the scan points correspond to

different ranges of values for µ as indicated in the picture legend.

Next, in figure 12 we have plotted for each scan point in the parameter space the

absolute values and phases of C7(mb) and C8(mb), including the SM and charged-Higgs

contributions as well as the tan β-enhanced chargino contributions. The abscissa always

represents our new value, taking into account also the gluino and neutralino contributions

from eqs. (4.17), (4.18) and (4.20), while the ordinate represents the corresponding “old”

value, discarding gluino-squark and neutralino-squark diagrams. In this way, the deviation

from the diagonal indicates the relative size of the new contribution. In the Standard

Model both coefficients are negative; we have plotted here arg(−C7,8) in order to center

the phase plots around the origin.

We can see that the gluino-squark contributions do not cause strong modifications of

C7(mb), however they can have a strong impact on C8(mb) for large values of µ. This

confirms again the result of our estimate in section 4.1. The reason for the dependence of
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m̃QL
, m̃uR

, m̃dR
600 GeV Ab −600 GeV

µ 800 GeV mA0 350 GeV

M1 300 GeV M2 400 GeV

M3 500 GeV ϕAt 3π/2

tan β 50

Table 2: Parameter point used for the numerical analyses of C8(mb) in figure 13 and SφKS

in figure 14.

400 600 800 1000 1200
È AtÈ HGeVL

0.15

0.20

0.25

È C8È

Figure 13: |C8(mb)| as a function of |At| for the parameter point of table 2: full result

(solid) and result without the gluino contribution (dashed).

C8(mb) on µ is the experimental constraint from B(B → Xsγ). The value of µ determines

the mass of the higgsino component of the charginos. If |µ| is small, the higgsino is light

and gives a potentially large contribution to C7(mb) which is only compatible with data

on B(B → Xsγ) if |At| is rather small and the stops are rather heavy. As discussed above,

this reduces in turn the value of ǫFC, to which the gluino contributions to the magnetic

operators are proportional. Conversely, if |µ| is large, the higgsino is heavy and larger

values of |At| and ǫFC are possible. This feature is illustrated in figure 13 where we

plot |C8(mb)| over |At| while fixing the other MSSM parameters to the values given in

table 2 and applying the same constraints as above. We see that a wide range of values is

allowed for |At| (this range corresponds to the plot range) and that the importance of the

gluino-squark contributions to |C8(mb)| grows with |At|.
Our finding affects some important low-energy observables which depend on C8(mb).

As an example, we have estimated the mixing-induced CP asymmetry SφKS
of the FCNC

decay B̄0 → φKS . This decay is generated by b → s s̄s QCD penguins and can thus arise

from the operator O8 with the gluon coupling to s̄s. Here we only want to give a qualitative

picture of the importance of the new contribution to the coefficient of O8. Therefore we

have calculated the matrix element only in the leading-order of QCD factorisation [64,
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400 600 800 1000 1200
È AtÈ HGeVL

0.2

0.3

0.4

0.5

0.6

0.7

SΦKS

Figure 14: SφKS
as a function of |At| at the parameter point of table 2: full result

(solid) and result without the gluino contribution (dashed). The shaded area represents

the experimental 1σ range and the dotted line is the Standard-Model value.

65], i.e. dropping O(ΛQCD/mb) and O(αs) corrections. Only the tanβ-enhanced chargino

and gluino contributions to C8(mb) are taken into account and their sum is denoted by

CNP8 . The result presented here is therefore not to be seen as a precise quantitative

prediction. A more detailed study including next-to-leading order effects will be performed

in an upcoming publication.

For the moment, we will follow the analyses of refs. [66] and [67] and write

AφKS
≡ 〈φKS |Heff|B0〉 = AcφKS

[
1 + auφKS

eiγ + (bcφKS
+ buφKS

eiγ)CNP∗
8 (mb)

]
(5.1)

for the B0 → φKS decay amplitude and ĀφKS
as the CP-conjugate B̄0 decay amplitude.

We remark that the complex conjugation of CNP8 is missing in ref. [67]. With the standard

definition

λφKS
= −e−iφB

ĀφKS

AφKS

(5.2)

the mixing-induced CP asymmetry reads

SφKS
=

2 Im(λφKS
)

1 + |λφKS
|2 . (5.3)

In this section we have not considered possible new-physics contributions to the phase

φB of B−B mixing, which are necessarily small in our naive MFV scenario. We have

found agreement with the numerical values of auφKS
and bcφKS

in ref.[66] and have used

buφKS
≈ |V ∗

usVub|/|V ∗
csVcb| bcφKS

. In figure 14 we plot SφKS
versus |At| for the parameter

point of table 2. We can see a large impact of the gluino-squark contribution on CNP8 (mb),

especially for large |At|.
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6 Conclusions

This paper addresses the MSSM for large values of tanβ. We have considered a version of

Minimal Flavour Violation (MFV) in which all elementary couplings of neutral bosons to

(s)quarks are flavour-diagonal and the flavour structures of W , charged-Higgs and chargino

couplings are governed by the CKM matrix. Complex phases of flavour-conserving param-

eters like the trilinear SUSY-breaking term At are consistently included in our results. It

is well-known that loop suppression factors can be compensated by a factor of tanβ, so

that tanβ-enhanced loop diagrams must be resummed to all orders in perturbation the-

ory [4–6, 21, 25, 38, 42]. Further tan β-enhanced loop-induced FCNC couplings of neutral

Higgs bosons lead to a plethora of interesting effects in B physics, which can be probed

with current data from B factories and the Tevatron [7, 22–24, 30, 33–36, 68]. The subject

is usually treated with the help of an effective field theory, a general two-Higgs-doublet

model. This model is found by integrating out the genuine supersymmetric particles and

is therefore valid for MSUSY ≫ v,MA0,H0,H± . In this paper we derive resummation formu-

lae which do not assume any hierarchy between MSUSY, the electroweak scale v and the

Higgs masses. We use the diagrammatic resummation developed in ref. [21] and extend

the method to the case of flavour-changing interactions.

As a first result we derive the dependence of the resummation formula on the renormal-

isation scheme of the MSSM parameters. In particular we find that the familiar expression

of eq. (2.18) is modified if the sbottom mixing angle θ̃b is used as input. This result

is useful if high-pT collider physics is studied in conjunction with low-energy data from

B physics. While the focus of large-tan β collider physics has been on Higgs physics so

far [20, 21, 69, 70], our result permits the correct treatment of tanβ-enhanced effects in

production and decay of bottom squarks. We then resum tanβ-enhanced loop corrections

to flavour-changing processes for arbitrary values of the supersymmetric particle masses.

We find that the renormalisation of CKM elements and the loop-induced neutral-Higgs cou-

plings to quarks have the same form as in the decoupling limit MSUSY ≫ v,MA0,H0,H± , but

the loop-induced couplings depend on the supersymmetric parameters in a different way.

As novel results we find tan β-enhanced loop-induced couplings of gluinos and neutralinos

and determine the analogous corrections to chargino couplings. These results permit the

study of tanβ-enhanced corrections to processes involving a decoupling supersymmetric

loop. Since these processes vanish for MSUSY → ∞, they cannot be studied with the

effective-field-theory method employed in refs. [7, 22, 23, 30, 33–36]. Other applications

are flavour-changing processes with squark final states, which may be a topic for the ILC.

All new FCNC couplings share a feature which was found for the flavour-conserving Higgs

couplings to quarks in ref. [21]: the resummed tan β-enhanced effects can be absorbed into

judiciously chosen counterterms. Therefore they can be viewed as effective local couplings,

irrespective of the hierarchy between MSUSY and v. We exploit this feature to derive effec-

tive Feynman rules (collected in appendix C) for all affected MSSM couplings. However,

tan β-enhanced corrections to suppressed tree-level couplings of order cot β are non-local

and involve process-dependent form factors.
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We have further performed an exhaustive phenomenological analysis of FCNC pro-

cesses in B physics. The new gluino-squark loop contributions are negligible for B−B
mixing and are small in b → sγ, where they are of similar size as the non-enhanced two-

loop contributions [51]. The latter feature stems from an accidental numerical suppression

factor in the Wilson coefficient C7. This suppression is absent in C8: here the gluino-squark

loop can contribute as much as the known chargino-squark diagram. We have studied the

impact on the mixing-induced CP asymmetry SφKS
in the decay Bd → φKS . The result

in figure 14 complies with B(B → Xsγ) and the experimental lower bounds on the masses

of sparticles and the lightest Higgs boson. Since no MSSM Higgs bosons are involved,

the size of SφKS
is uncorrelated with B(Bs → µ+µ−). Therefore tighter future bounds

on the latter quantity can be evaded by increasing MA0 without suppressing SφKS
. We

have further generalised the known neutral-Higgs mediated contributions to Bs → µ+µ−

and Bs−Bs mixing to the case of arbitrary MSUSY. Our more accurate expression for

B(Bs → µ+µ−) is especially useful once LHCb measures this branching fraction in excess

of the SM prediction. Finally we have identified a new contribution to Bs−Bs mixing:

The parameter r in eq. (4.38) can alter the phase of the Bs−Bs mixing amplitude and

may affect the mixing-induced CP asymmetry in Bs → J/ψφ.
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A Conventions

Throughout this paper, our notation for SUSY parameters, sparticle masses and mixing

matrices follows the conventions of the SLHA [43]. In section A.1 we extend the SLHA

to accommodate complex phases in the squark mass matrices. In section A.2 we give

explicit expressions for certain combinations of elements of the chargino mixing matrices.

Section A.3 lists the loop functions entering our results.

A.1 Squark mixing

In the naive MFV scenario the squark mass-matrices are hermitian 2 × 2-matrices. For

top- and bottom-squarks they can be expressed in the basis (q̃L, q̃R) with q = t, b as

M2
q̃ =

(
m2
q̃L

Xq̃

X∗
q̃ m2

q̃R

)
. (A.1)
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The diagonal elements can be chosen real and are given by

m2
q̃L =m̃2

QL
+m2

q + (T 3
q −Qq sin2 θW )m2

Z cos 2β, (A.2)

m2
q̃R

=m̃2
qR

+m2
q +Qq sin2 θWm

2
Z cos 2β. (A.3)

Neglecting terms proportional to the small vd in the off-diagonal elements we obtain

Xt̃ = mtA
∗
t , (A.4)

Xb̃ = −y(0)∗
b vuµ. (A.5)

The mass eigenstates q̃1,2 are related to the weak eigenstates via

(q̃1, q̃2)
T = R̃q (q̃L, q̃R)T (A.6)

with a unitary matrix R̃q which diagonalises the mass matrix:

R̃qM2
q̃R̃

q† = diag(m2
q̃1,m

2
q̃2), (A.7)

m2
q̃1,2

=
1

2

(
m2
q̃L +m2

q̃R ±
√

(m2
q̃L

−m2
q̃R

)2 + 4|Xq|2
)
. (A.8)

If the diagonal elements of the mass matrix are chosen real, the mixing matrix contains

only one physical phase and can thus be parameterised as

R̃q =

(
cos θ̃q sin θ̃qe

iφ̃q

− sin θ̃qe
−iφ̃q cos θ̃q

)
, (A.9)

i.e. by two real parameters, the mixing-angle θ̃q and the phase φ̃q. In practical calculations

where squarks are involved, elements of the mixing matrices appear in the Feynman rules.

One then has the choice either to consider θ̃q and φ̃q as input parameters or to express

them by means of the relation

eiφ̃q sin 2θ̃q =
2Xq̃

m2
q̃1
−m2

q̃2

, (A.10)

that can be derived from eq. (A.7). To give separate relations for θ̃q and φ̃q one has to

specify the allowed range for both parameters. Choosing θ̃q ∈ [0, π/4] and φ̃q ∈ [0, 2π) for

example results in

sin 2θ̃q =

∣∣∣∣∣
2Xq̃

m2
q̃1
−m2

q̃2

∣∣∣∣∣ , φ̃q = arg

(
2Xq̃

m2
q̃1
−m2

q̃2

)
. (A.11)

Constraining θ̃q to this interval amounts to defining q̃1 (q̃2) as the eigenstate which is

predominantly left-handed (right-handed).

We emphasize that in the sbottom mass-matrix we have defined the off-diagonal ele-

ment Xb̃ in terms of the Yukawa coupling y
(0)
b instead of the bottom mass. This parame-

terisation is valid irrespective of the renormalisation scheme used for the tan β-enhanced

corrections to mb. In practical calculations, one can use one of the resummation formulae

given in section 2.1 to relate y
(0)
b to the measured bottom mass. The corresponding cor-

rections to m2
b in the diagonal elements of the sbottom mass-matrix are negligible since

m2
b ≪ m̃2

QL
, m̃2

bR
.
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A.2 Chargino mixing

In our conventions the chargino mass-matrix is given by

Meχ± =

(
M2

√
2MW sin β√

2MW cos β µ

)
. (A.12)

We define the biunitary transformation which brings it into diagonal form as

Ũ∗Meχ± Ṽ † = diag
(
m

eχ±
1
,m

eχ±
2

)
. (A.13)

The matrices Ũ and Ṽ can be determined by diagonalising the matrices M†

eχ±Meχ± and

Meχ±M†

eχ± . In Feynman amplitudes for diagrams with chirality-flipping propagators only

certain combinations of matrix-elements of Ũ and Ṽ appear. These combinations can be

expressed as

Ũ11Ṽ11 =
m

eχ±
1
M2 −m

eχ±
2
µ∗ eiψ

m2
eχ±
1

−m2
eχ±
2

, Ũ11Ṽ12 =
√

2MW

m
eχ±
1

sinβ +m
eχ±
2

cos β eiψ

m2
eχ±
1

−m2
eχ±
2

, (A.14)

Ũ12Ṽ12 =
m

eχ±
1
µ−m

eχ±
2
M∗

2 e
iψ

m2
eχ±
1

−m2
eχ±
2

, Ũ12Ṽ11 =
√

2MW

m
eχ±
1

cosβ +m
eχ±
2

sin β eiψ

m2
eχ±
1

−m2
eχ±
2

, (A.15)

Ũ21Ṽ21 =
m

eχ±
1
µ∗ eiψ −m

eχ±
2
M2

m2
eχ±
1

−m2
eχ±
2

, Ũ21Ṽ22 = −
√

2MW

m
eχ±
1

cos β eiψ +m
eχ±
2

sinβ

m2
eχ±
1

−m2
eχ±
2

, (A.16)

Ũ22Ṽ22 =
m

eχ±
1
M∗

2 e
iψ −m

eχ±
2
µ

m2
eχ±
1

−m2
eχ±
2

, Ũ22Ṽ21 = −
√

2MW

m
eχ±
1

sin β eiψ +m
eχ±
2

cosβ

m2
eχ±
1

−m2
eχ±
2

(A.17)

with

eiψ = (M2µ−M2
W sin 2β)/(m

eχ±
1
m

eχ±
2
). (A.18)

For large tan β the cos β-terms can be neglected and the above expressions reduce to

Ũ11Ṽ11 =
M2

m
eχ±
1

·
m2

eχ±
1

− |µ|2

m2
eχ±
1

−m2
eχ±
2

, Ũ11Ṽ12 =

√
2MWmeχ±

1
sin β

m2
eχ±
1

−m2
eχ±
2

, (A.19)

Ũ12Ṽ12 =
µ

m
eχ±
1

·
m2

eχ1
− |M2|2

m2
eχ±
1

−m2
eχ±
2

, Ũ12Ṽ11 =
M2

m
eχ±
1

·
√

2MWµ sin β

m2
eχ±
1

−m2
eχ±
2

, (A.20)

Ũ21Ṽ21 =
M2

m
eχ±
2

·
|µ|2 −m2

eχ±
2

m2
eχ±
1

−m2
eχ±
2

, Ũ21Ṽ22 = −
√

2MWmeχ±
2

sin β

m2
eχ±
1

−m2
eχ±
2

, (A.21)

Ũ22Ṽ22 =
µ

m
eχ±
2

·
|M2|2 −m2

eχ±
2

m2
eχ±
1

−m2
eχ±
2

, Ũ22Ṽ21 = − µ

m
eχ±
2

·
√

2MWM2 sin β

m2
eχ±
1

−m2
eχ±
2

. (A.22)
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A.3 Loop functions

In the calculation of quark self-energies with internal SUSY particles, we use the scalar

integrals

B0(m1,m2) =
(2πµ)4−d

iπ2

∫
ddq

(q2 −m2
1)(q

2 −m2
2)
, (A.23)

C0(m1,m2,m3) =
(2πµ)4−d

iπ2

∫
ddq

(q2 −m2
1)(q

2 −m2
2)(q

2 −m2
3)
, (A.24)

D0(m1,m2,m3,m4) =
(2πµ)4−d

iπ2

∫
ddq

(q2 −m2
1)(q

2 −m2
2)(q

2 −m2
3)(q

2 −m2
4)
, (A.25)

where µ is the renormalisation scale. This corresponds to the well-known Passarino-

Veltman notation with vanishing external momenta. Besides, we use the function

D2(m1,m2,m3,m4) =
(2πµ)4−d

iπ2

∫
q2 ddq

(q2 −m2
1)(q

2 −m2
2)(q

2 −m2
3)(q

2 −m2
4)
. (A.26)

Explicit expressions for these integrals read

B0(m1,m2) =
2

4 − d
− γE + log 4π + 1 − log

m2
1

µ2
+

m2
2

m2
2 −m2

1

log
m2

1

m2
2

, (A.27)

C0(m1,m2,m3) =
m2

2

(m2
1 −m2

2)(m
2
3 −m2

2)
log

m2
1

m2
2

+
m2

3

(m2
1 −m2

3)(m
2
2 −m2

3)
log

m2
1

m2
3

, (A.28)

D0(m1,m2,m3,m4) =
m2

2

(m2
2 −m2

1)(m
2
2 −m2

3)(m
2
2 −m2

4)
log

m2
1

m2
2

+

m2
3

(m2
3 −m2

1)(m
2
3 −m2

2)(m
2
3 −m2

4)
log

m2
1

m2
3

+

m2
4

(m2
4 −m2

1)(m
2
4 −m2

2)(m
2
4 −m2

3)
log

m2
1

m2
4

, (A.29)

D2(m1,m2,m3,m4) =
m4

2

(m2
2 −m2

1)(m
2
2 −m2

3)(m
2
2 −m2

4)
log

m2
1

m2
2

+

m4
3

(m2
3 −m2

1)(m
2
3 −m2

2)(m
2
3 −m2

4)
log

m2
1

m2
3

+

m4
4

(m2
4 −m2

1)(m
2
4 −m2

2)(m
2
4 −m2

3)
log

m2
1

m2
4

. (A.30)

The divergence in B0 always drops out when we sum over the internal squarks and gauginos.

In our expressions for the Wilson coefficients C7,8, we use the loop functions

f1(x) =
5 − 7x

6(x− 1)2
+
x(3x− 2)

3(x − 1)3
log x, (A.31)

f2(x) =
x+ 1

2(x− 1)2
− x

(x− 1)3
log x, (A.32)

f3(x) =
1

2(x− 1)
− x

2(x− 1)2
log x. (A.33)
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sL bRsL bR

−iΣRL
bs ≡ −iΣRL(1)

bs

bL bL bR bR

−imb ≡ −iΣQCD
b

Figure 15: QCD corrections to the self-energy ΣRL
bs (left) and the bottom mass mb (right).

B QCD corrections to flavour-changing self-energies

Here we want to discuss the issue of the bottom mass appearing in calculations following

the approach of section 3.1. In that section, we have introduced tanβ-enhanced flavour-

mixing via flavour-changing self-energies ΣRL
bs in external legs. As a consequence the quark

pole-mass mpole
b enters the resulting expression through the Dirac equation /pb = mpole

b b.

However, as we will show in this section, QCD corrections add in such a way that the final

result does not depend on mpole
b but only on the MS-mass mb.

To see this we consider an effective theory at µ ∼ O(mb) where the SUSY-particles

are integrated out. The self-energy ΣRL
bs then appears as Wilson coefficient of the (on-shell

vanishing) operator b̄PLs. Comparing QCD corrections to this operator to QCD corrections

to the bottom mass mb (see figure 15) we find

Σ
RL(1)
bs (p)

ΣRL
bs

=
ΣQCD
b (p)

mb
, (B.1)

where p denotes the external momentum. Therefore the Wilson coefficient ΣRL
bs and the

MS-mass mb renormalise the same way. To make the behaviour under renormalisation

explicit we write

ΣRL
bs = mbA (B.2)

where now A is renormalisation-scale-independent (note the analogy to the definitions of

ǫb and ǫFC in eqs. (2.4), (2.8) and (3.1) which are thus renormalisation-scale independent).

Now we calculate QCD corrections to the diagrams in figure 5. Using the parame-

terisation (B.2) for ΣRL
bs and neglecting the s-quark mass the Feynman amplitudes for the

diagrams in figure 5 read

M(1)
1 = Mrest

1 ·
i(/p +mb)

p2 −m2
b

∣∣∣∣
/p=0

(−iΣRL
bs ) = −Mrest

1 ·A, (B.3)

M(2)
2 = Mrest

2 ·
i(/p +ms)

p2 −m2
s

∣∣∣∣
/p=m

pole
b

(−iΣRL∗
bs ) = +Mrest

2 · A∗ mb

mpole
b

. (B.4)

Since we want to perform a calculation up to order αs in the effective theory we have

to determine A from two-loop matching at the SUSY scale and we make this explicit by

writing

A = A(0) +A(1) (B.5)

where A(1) contains O(αs) QCD-corrections. The one-loop corrections to M1 and M2

in the effective theory are given in figures 16 and 17, respectively, with diagrams (1b)
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sL sL bR bR bL

(1a)

−imbA

sL bR bL

(1b)

−iδmbA

sL bR bL bL bR bR bL

(1c)

−imbA

sL bR bL bR bL

(1d)

−iδmb−imbA

Figure 16: QCD corrections to diagram (1) in figure 5.

and (2b) taking into account the counterterm to the Wilson coefficient ΣRL
bs = mbA. As

a consequence of (B.1), the contributions of (1a) and (1c) and of (1b) and (1d) cancel

pairwise so that the expression for M1 in (B.3) still holds at one loop with A = A(0) +A(1)

instead of A = A(0). For the contributions of (2a) and (2b) we find with the help of (B.1)

M(2a)
2 = Mrest

2 ·
i(/p +ms)

p2 −m2
s

(
−iΣRL(1)∗

bs (p)
)∣∣∣∣
/p=m

pole
b

= Mrest
2 ·A(0)∗ ΣQCD

b (p)

mpole
b

∣∣∣∣∣
/p=m

pole
b

(B.6)

M(2b)
2 = Mrest

2 ·
i(/p +ms)

p2 −m2
s

∣∣∣∣
/p=m

pole
b

(−iδmbA
(0)∗) = Mrest

2 · A(0)∗ δmb

mpole
b

. (B.7)

Adding these to eq. (B.4) one gets

M2 = M(2)
2 +M(2a)

2 +M(2b)
2 = Mrest

2 · A
(0)∗

mpole
b

(
mb +mb

A(1)∗

A(0)∗
+ ΣQCD

b (p)
∣∣∣
/p=m

pole
b

+ δmb

)
.

(B.8)

Plugging in

mpole
b = mb + ΣQCD

b (p)
∣∣∣
/p=m

pole
b

+ δmb (B.9)

and dropping terms of order O(α2
s) we get the final result

M2 = Mrest
2 · (A(0)∗ +A(1)∗) = Mrest

2 · A∗ (B.10)

which now does not depend on mpole
b anymore.

Applying this result to our case by expressingA in eq. (B.10) through ΣRL
bs via eqs. (B.2)

and (3.1) we find eq. (3.5). Since eq. (3.1) is linear in mb, the parameterisation of eq. (B.2)

is quite natural. When one considers a more general ΣRL
bs which is no longer linear in mb

(for example in the generic MSSM), the parameter A depends on mb via (B.2) but in any

case it does not involve mpole
b .
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bL bR bR sL sL

(2a)

−imbA
∗

bL bR sL

(2b)

−iδmbA
∗

Figure 17: QCD corrections to diagram (2) in figure 5.

C Feynman rules

In this appendix, we explain how tan β-enhanced loop corrections can be incorporated into

calculations in the MSSM with naive MFV by simple modifications of the Feynman rules.

The resulting modified rules are valid beyond the decoupling limit and refer to input scheme

(i) for the sbottom parameters specified in section 2.1. They can also be used for processes

with external SUSY particles. The modifications, which can easily be implemented into

computer programs like FeynArts, are given as follows:

(i) Express the Feynman rules in terms of the down-type Yukawa couplings ydi
and

replace them according to relation (2.18) by

ydi
→ y

(0)
di

=
mdi

vd(1 + ǫi tan β)
. (C.1)

It should be stressed that the same replacement has to be performed for the Yukawa

coupling appearing in the sbottom mass matrix Mb̃ in (A.1) before determining the

mixing angle via (A.10). In case one wants to rely on input scheme (iii) the sbottom

mixing matrix has to be calculated iteratively as described in section 2.2.

(ii) Replace CKM-elements involving the third quark generation according to

Vti −→ V
(0)
ti =

1 + ǫb tan β

1 + (ǫb − ǫFC) tan β
Vti (i = d, s) (C.2)

Vib −→ V
(0)
ib =

1 + ǫ∗b tan β

1 + (ǫ∗b − ǫ∗FC) tan β
Vib (i = u, c). (C.3)

All other CKM-elements remain unchanged. The Vij appearing after these replace-

ments correspond to the physical ones which can be measured from the W+uidj-

vertex.

(iii) This last rule concerns vertices involving down-type quarks. Into these one has to

include the flavour-changing wave-function counterterms

δZLbi
2

= − ǫFC tan β

1 + ǫb tan β
V ∗
tbV

(0)
ti (C.4)

δZRbi
2

= −mi

mb

[
ǫFC tan β

1 + ǫb tan β
+

ǫ∗FC tan β

1 + ǫ∗i tan β

]
V ∗
tbV

(0)
ti (C.5)
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for i = d, s. This leads to additional flavour-changing vertices and occasionally cancels

the corrections from rule (ii).

If one uses our Feynman rules, tanβ-enhanced loop corrections of the form (ǫ tan β)n

are automatically resummed to all orders. There is one exception: proper vertex-corrections

to the tan β-suppressed h0didj- and H+diLu
j
R-vertices and to the corresponding Goldstone-

boson vertices can not be accounted for by this method.

As mentioned above, additional flavour-changing vertices are generated by replacement

rule (iii) in the case of external down-quarks. In the following we give explicit Feynman

rules for these vertices, suppressing therein colour indices of (s)quarks. Repeated indices

are not summed over.

dj

di

S0 − i√
2

[
xSd

(
δji y

(0)
dj

+
δZLji

2
y

(0)
dj

−
δZRji

2
y

(0)
di

)
PL

+(xSd )∗

(
δji y

(0)∗
dj

+
δZRji

2
y

(0)∗
dj

−
δZLji

2
y

(0)∗
di

)
PR

]
(C.6)

with xSd = (cosα,− sinα, i sin β,−i cos β) for S0 = (H0, h0, A0, G0)

uj

di

S+

iξSL yuj
Vji PL + iξSR

(
y

(0)∗
di

V
(0)
ji +

δZRji
2

y
(0)∗
dj

Vjj

)
PR (C.7)

with ξSL = (cos β, sin β) and ξSR = (sin β,− cos β) for S+ = (H+, G+) (C.8)

ũs
j

di
χ̃c

m
iVji

(
yuj

R̃
uj

s2 Ṽ
∗
m2 − gR̃

uj

s1 Ṽ
∗
m1

)
PL

+ iR̃
uj

s1 Ũm2

(
y

(0)∗
di

V
(0)
ji +

δZRji
2

y
(0)∗
dj

Vjj

)
PR (C.9)

d̃s
j

ui
χ̃m

iV
(0)∗
ij

[(
y

(0)
dj
R̃
dj

s2Ũ
∗
m2 − gR̃

dj

s1Ũ
∗
m1

)
PL + yui

R̃
dj

s1Ṽm2PR

]
(C.10)

d̃s
j

di
g̃a

− i
√

2gsT
a

[(
δji +

δZLji
2

)
R̃
dj

s1PL −
(
δji +

δZRji
2

)
R̃
dj

s2PR

]
(C.11)

d̃s
j

di
χ̃0

m
i

(
δji +

δZLji
2

)[√
2R̃

dj

s1

(
g

2
Ñ∗
m2 −

g′

6
Ñ∗
m1

)
− y

(0)
dj
R̃
dj

s2Ñ
∗
m3

]
PL

− i

(
δji +

δZRji
2

)[√
2

3
g′R̃

dj

s2Ñm1 + y
(0)∗
dj

R̃
dj

s1Ñm3

]
PR (C.12)
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Occasionally, the flavour-changing counterterms have to be explicitly inserted into external

or internal quark lines. In these cases, they cancel insertions of tan β-enhanced flavour-

changing self-energies up to corrections which are suppressed by at least one power of

mb/MSUSY. The Feynman rule reads

didj
− i

(
mi

1 + ǫi tan β

δZLij
2

− mj

1 + ǫj tan β

δZRij
2

)
PL

− i

(
mi

1 + ǫ∗i tan β

δZRij
2

− mj

1 + ǫ∗j tan β

δZLij
2

)
PR. (C.13)
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