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ABSTRACT: We study the Minimal Supersymmetric Standard Model with Minimal Flavour
Violation for the case of a large parameter tan 5 and arbitrary values of the supersymmetric
mass parameters. We derive several resummation formulae for tan G-enhanced loop correc-
tions, which were previously only known in the limit of supersymmetric masses far above
the electroweak scale. Studying first the renormalisation-scheme dependence of the resum-
mation formula for the bottom Yukawa coupling, we clarify the use of the sbottom mixing
angle in the supersymmetric loop factor Ay. As a new feature, we find tan S-enhanced
loop-induced flavour-changing neutral current (FCNC) couplings of gluinos and neutralinos
which in turn give rise to new effects in the renormalisation of the Cabibbo-Kobayashi-
Maskawa matrix and in FCNC processes of B mesons. For the chromomagnetic Wilson
coefficient Cg, these gluino-squark loops can be of the same size as the known chargino-
squark contribution. We discuss the phenomenological consequences for the mixing-induced
CP asymmetry in By — ¢Kg. We further quote formulae for B, — p*p~ and B, — B,
mixing valid beyond the decoupling limit and find a new contribution affecting the phase of
the BB, mixing amplitude. Our resummed tan 3-enhanced effects are cast into Feynman

rules permitting an easy implementation in automatic calculations.
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1 Introduction

The Minimal Supersymmetric Standard Model (MSSM) contains two Higgs doublets H,,
and Hg, whose Yukawa couplings to quarks are given by

L, = —yduQleH, + yi dzQFeH; + hc. (1.1)

Here @Q;, u’é and d’}é are the usual left-handed doublet and right-handed singlet quark
fields, € is the antisymmetric 2 X 2 matrix with €;0 = —e91 = 1, and y,, and y, are Yukawa
matrices with generation indices ¢, j = 1,2, 3. The holomorphy of the superpotential forbids
couplings of H, to dr and of Hy to up, so that the Yukawa Lagrangian of eq. (1.1) is



that of a two-Higgs-doublet model (2HDM) of type II. The neutral components of the

Higgs doublets acquire vacuum expectation values (vevs) v, and vy with v = /02 4+ 02 ~
174 GeV leading to quark mass matrices M, = y,v, and My = yqvg. Unitary rotations
of the quark fields in flavour space diagonalise these matrices, the resulting basis of mass
eigenstates is no more a weak basis (with manifest SU(2) symmetry) and the familiar
Cabibbo-Kobayashi-Maskawa (CKM) matrix appears in the couplings of the W boson
to the quark fields. As long as only the tree-level couplings of £, are considered the
Yukawa couplings are diagonal in flavour space, yéj = ¥q;0ij (no sum over j). At this point
no flavour-changing couplings of neutral Higgs bosons occur and the diagonal Yukawa
couplings are easily expressed in terms of quark masses my;, and tanf8 = v, Jva: Yd;, =
M, /va = mq;/(vcosB) and Yy, = My, /vy = my,/(vsinF). If tan 3 is large, the Higgs
couplings to down-type fermions can be enhanced to a level which is detectable in present-
day B physics experiments. In particular, for tan 5 = O(50) the bottom Yukawa coupling
Yb = Yds can be of order 1. A theoretical motivation of such large values of tan 3 is given
by bottom-top Yukawa unification, which occurs in SO(10) GUT models with minimal
Yukawa sector. Phenomenologically, the anomalous magnetic moment of the muon invites
large values of tan 3 [1], but the current situation is inconclusive in the light of recent
experimental data on the hadroproduction cross section measured by BaBar [2].

Once soft supersymmetry-breaking terms are considered, the pattern described above
changes dramatically: as pointed out first by Banks, one-loop diagrams induce an effective
coupling of H, to dg% [3]. Hall, Rattazzi and Sarid then discovered the relevance of this
loop contribution for large-tan § phenomenology [4-6]. If Mgysy, the mass scale of the
supersymmetry-breaking terms, is much larger than the masses and vevs of the Higgs
sector, we can integrate out the SUSY particles. The resulting effective Lagrangian is that
of a general 2HDM, different from the type-II 2HDM which we encounter at tree-level. In
the Super-CKM basis for the quark and squark fields, in which yzj = Yd, 8% the Yukawa
couplings of down-type quarks are given by the effective Lagrangian

L8 =y, dpQFeHy — ¥ drQVH; + hec. (1.2)

In this paper we restrict ourselves to the case that the soft SUSY-breaking terms are
flavour-diagonal in the Super-CKM basis. As a consequence, all gluino-squark-quark and
neutralino-squark-quark couplings in the MSSM Lagrangian are flavour-diagonal. Further
the chargino-squark-quark couplings come with the same CKM elements as the correspond-
ing couplings of W bosons or charged Higgs bosons to (s)quarks. This scenario of naive
Minimal Flavour Violation (naive MFV) occurs if e.g. supersymmetry is broken at a low
scale by a flavour-blind mechanism leading to flavour-universal squark mass matrices. (A
symmetry-based and RG-invariant definition of MFV has been proposed in [7]. For a re-
cent analysis see ref. [8].) In our version of naive MFV, however, we slightly go beyond
flavour universality, as we allow the SUSY-breaking terms of the third generation to be
different from those of the first two generations. In this way we also include the cases of
the widely-studied CMSSM (see e.g. refs. [9, 10] for recent studies) and mSUGRA [11-16]
models, in which renormalisation-group (RG) effects involving the large top and bottom
Yukawa couplings destroy the universal boundary condition imposed at the GUT scale.



Figure 1: Effective coupling of the down-type quarks to H,,.

In such models with high-scale flavour universality the RG also induces flavour-violating
gluino and neutralino couplings at the electroweak scale, but their impact on FCNC transi-
tions like B—B mixing and b — sv is small [17, 18] and the naive MFV pattern essentially
stays intact. On the other hand, the universality of the flavour-diagonal SUSY-breaking
terms is badly broken at low energies, e.g. the trilinear term of the third generation A;
substantially differs from A, ~ A.. We emphasize that no variant of the MFV assumption
forbids flavour-diagonal CP-violating phases [19]. Such phases appear in A, the higgsino
mass parameter pu, and the gaugino mass terms M;, ¢ = 1,2,3, which we consequently
always treat as complex quantities throughout our analysis.

The dominant contribution to the effective coupling @Zj stems from a gluino-squark
loop and is depicted in figure 1. In naive MFV, the corresponding contribution to @zj is
@gi 5@‘ with

59— 9 - s
ydi = Yd; " € </’L7mdlL7md%> )

5 2006
and e (“’mdi’mdgj =3 mgp” Co (mg,mcﬁL,m%) . (1.3)
Here m2, and m2 are the mass terms for the left-handed and right-handed down-squarks

di diy

of the i-th generation, respectively, mg is the gluino mass and the loop integral Cy is

defined in appendix A. Accounting for similar contributions from loops with charginos
5 S <0

(still neglecting flavour mixing) or neutralinos we write ¢; = €/ + € + €X . Both terms

in EZ% of eq. (1.2) contribute to the masses of down-type quarks. The ratio of the two

contributions is

A; = Y4 _ € - tan 3. (1.4)

Yd;Vd
A large value of tan 8 can compensate for the loop factor ¢; rendering A; = O(1). The
relation between the Yukawa coupling y4, and the physical quark mass mg, is therefore

modified substantially:

md,
= 1.5
Yd; Ud(l + Az) ( )

Several papers have studied the impact of A; on Yukawa unification [4, 6], neutral [20] and
charged Higgs [21] phenomenology.



Later Hamzaoui, Pospelov and Toharia have discovered that Z/flj has a profound im-
pact on flavour physics: the down-quark mass matrix My computed from E‘;ﬁl will be non-
diagonal and conversely a non-diagonal Yukawa coupling yfij appears in the basis of mass
eigenstates [22]. The resulting FCNC couplings of the non-standard neutral Higgs bosons
H° and A° are loop-suppressed but involve two powers of tan 3. Thus the new FCNC
couplings may compete in size with the flavour-diagonal tree-level coupling which involves
a single power of tan 3 and is of order 1 in the case of the bottom quark. Importantly, these
effects are already highly relevant in naive MFV, where only chargino-loops contribute to
the off-diagonal entries of @flj , which moreover involve the same small CKM elements as the
SM contribution. In our effective theory, the general 2HDM with E’jﬂl in eq. (1.2), FCNC
processes proceed through tree diagrams with H° or A exchange. Most spectacular ef-
fects occur in By s — ¢7¢~ decays, where a priori orders-of-magnitude effects were possible
even in the MSSM with naive MFV [23]. The dominant Higgs-mediated contribution to
B(Bgs — ¢707) is proportional to six powers of tan 3 and B(Bgs — ¢T¢7) is more sensitive
to the large-tan 3 region of the MSSM than any other decay rate or cross section. A cor-
related analysis of B(Bgs — ¢*¢~) with the muon anomalous magnetic moment has been
performed in ref. [24]. The presence of Z/flj in E?ef; further leads to a modification of the
relation between yilj and the CKM elements by tan S-enhanced loop corrections. This fea-
ture was studied in ref. [25] in MFV well before the discovery of the Higgs-mediated FCNC
effects.! As a consequence, the couplings of the charged Higgs boson to down-type fermions
are modified, with phenomenological impact on BT — 77v [27] and BT — D7 7w [28, 29].

B—B mixing plays a special role: the superficially leading contribution from diagrams
with right-handed b-quark fields vanishes [22], because the two diagrams with H® and A°
exchange cancel each other. Buras et al. have discovered that, despite of a suppression
factor of mg/my, the analogous diagrams with one right-handed s-quark field can sizably
diminish B — Bs mixing [30]. This effect is highly correlated with B(Bs — £t47) and
today’s upper bound on B(Bs — p*p~) from the Tevatron experiments [31, 32] severely
limits the size of the Higgs-mediated contribution in Bs— B, mixing [33]. In subsequent
papers further contributions such as the charged-Higgs box diagram to B—B mixing [34]
and contributions to Z/flj involving the electroweak gauge couplings were considered [35, 36].
A complete list of all one-loop contributions to @zj for the case of universal SUSY-breaking
terms taking into account all possible CP phases can be found in ref. [36]. The absence of
the superficially dominant contribution renders B—B mixing vulnerable to other subleading
corrections proportional to other small expansion parameters such as cot 3, v/Msysy or
the loop factor 1/(1672). Any of these corrections could potentially spoil the cancellation
and endanger the correlation found in [30]. The recent symmetry-based analysis of ref. [36]
has revealed that all these subleading corrections are small and the correlation found in
ref. [33] essentially stays intact. An important ingredient of this study are contributions
to B— B mixing stemming from loop corrections to the Higgs potential. At this point
the appropriate definition of tan 3, which is ill-defined in a general 2HDM, had to be

'Recently, this finite CKM renormalisation has been extended to the case of non-minimal flavour viola-
tion [26].



clarified. Loop corrections to B— B mixing from the Higgs potential were also calculated
in ref. [37]. In view of the findings of refs. [36, 37] we neglect all radiative contributions
to Higgs self-couplings and work with the tree-level Higgs potential of the MSSM. The
latter is CP-conserving; we can work with the usual Higgs mass eigenstates with definite
CP quantum numbers (i.e. the CP-odd A° and the CP-even kY, H?) and all CP-violation
discussed in this paper enters through the (loop-corrected) Yukawa sector.

The last three paragraphs have addressed Higgs couplings to right-handed down-type
quarks which involve a factor of tan 8 at tree-level. A different type of tan $-enhanced
corrections occurs in Higgs couplings of the right-handed top-quark field, which are sup-
pressed by a factor of cot 3 at tree level. A prominent example is the tgs;, HT coupling
entering the charged-Higgs loop in b — s7. Supersymmetric vertex corrections lift the cot 8
suppression and the one-loop correction competes with the tree-level coupling [38, 39]. In
the decoupling limit also these effects can be easily described by an effective Lagrangian
ﬁgffu, which in addition to the first term in eq. (1.1) contains an effective loop-induced
coupling ¢,/ involving H}.

The appearance of the tan S-enhanced supersymmetric loop correction A; in the de-
nominator of y; in eq. (1.5) signals the resummation of this correction to all orders in
perturbation theory. As a drawback, the effective-field-theory method is only valid for
Msusy > v, M 40, Mo, My+. This is unsatisfactory, since in supersymmetry one naturally
expects Mgusy ~ v, especially if the electroweak symmetry is broken radiatively. One needs
an unnatural fine-tuning in the Higgs potential to achieve Mgsysy > M 40, Mo, Mg+ [37].
After all the widely-studied scenarios with neutralino LSP involve several supersymmet-
ric particles with masses around and below v. Of course, several authors have discov-
ered tan B-enhanced loop corrections within diagrammatical one-loop calculations in the
MSSM [40, 41]. Yet only four papers have studied tan S-enhanced corrections with their
subsequent resummation beyond the Mgygy > v limit: in ref. [21] the tan S-enhanced
diagrams contributing to A; have been identified to all orders and have been explicitly
resummed. The result of ref. [21] mimics the form of eq. (1.5), but A; involves squark mass
eigenstates and its validity does not assume any hierarchy between v and Mgygy. In ref. [42]
the method of ref. [21] has been applied to the lepton sector in an analysis of the muon
anomalous magnetic moment. The authors of ref. [35] have calculated Higgs-mediated
FCNC processes to one-loop order for arbitrary Msysy, but relied on the effective-field-
theory formalism for the all-order resummation. In ref. [19] the tan S-enhanced corrections
to the Yukawa sector have been incorporated in an effective-potential approach, with a
proper consideration of all CP phases of the MSSM. The results of refs. [19, 35] permit
the resummation of the flavour-changing tan S-enhanced corrections through an iterative
procedure, which converges if the magnitude of these resummed corrections are numerically
smaller than 1. We present analytical resummation formulae in this paper corresponding
to the limits to which the iterative method converges.

It is illustrative to consider the extension of the effective-field-theory formalism to
subleading powers in v? /MSQUSY: to this end we must add higher-dimensional couplings to
E‘;ﬁ involving more H, fields. The gluino contributions to these new effective couplings
are shown in figure 2. Interestingly, in this simple case one can sum the contributions of
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Figure 2: Series of ‘hedgehog diagrams’ contributing to mg;.

these ‘hedgehog diagrams’ to mg, to all orders in v? /MSQUSY: the result has again the form
of eq. (1.5) with €] of eq. (1.4) replaced as

where m i denote the physical squark masses, i.e. the eigenvalues of the squark mass
matrix. Using this expression in egs. (1.4) and (1.5) reproduces the result of the diagram-
matic resummation of ref. [21]. The information encoded in the diagrams of figure 2 is also
contained in the one-loop effective functional of ref. [19].

In this paper we derive formulae for the resummation of tan S-enhanced corrections
which are valid for any value of Mgysy. As in any analysis of radiative corrections this
requires the full control over the renormalisation scheme of the parameters in the MSSM
Lagrangian. This can be achieved with the diagrammatic method of ref. [21], but is very
difficult to achieve with the effective-field-theory formalism, even if one succeeds to resum
the series in v?/M3qy as in eq. (1.6). The origin of this difficulty is readily understood:
while resummation formulae derived from L'fo correspond to a decoupling scheme for the
MSSM parameters, any two of such schemes may differ by terms of order v/Mgysy and the
corresponding resummation formulae look different. The plan of the paper is as follows:
in section 2 we first recall the diagrammatic resummation method and then address the
open issues of the case without flavour mixing. In particular we clarify the renormalisation
scheme of the sbottom mixing angle and derive analytic expressions for Ay = Ag for three
different schemes. In section 3 we resum the tan S-enhanced loop effects in FCNC processes.
Section 4 is devoted to an analysis of tan G-enhanced corrections to FCNC processes in B
physics. Section 5 contains a numerical study of the Wilson coefficients C7 and Cg and an
analysis of novel effects in B — ¢Kg. Finally we conclude.

2 Diagrammatic resummation: the flavour-conserving case

We use the conventions of the SUSY Les Houches Accord (SLHA) [43] for the MSSM
parameters. Several of these parameters carry complex phases, but only certain phase dif-
ferences are physical, CP-violating quantities. We choose a phase convention in which the
gluino mass parameter M3 is real and positive, so that M3 = mg. The phases entering the
left-right mixing of squarks are unspecified by the SLHA and are defined in appendix A,



where also our conventions for the loop integrals can be found. We always work in the
Super-CKM basis, in which the Yukawa matrices are diagonal in flavour space. For defi-
niteness we consider the quark sector only and in our discussion of flavour-diagonal effects
we usually quote the results for the b quark. The expressions generalise to the case of the
7 lepton in a straightforward way, by dropping the gluino contributions, replacing squarks
by sleptons and changing the hypercharges in the couplings appropriately.

2.1 The method

There are two potential sources of tan $-enhanced corrections,
i) the (renormalised) MSSM Lagrangian £ and
ii) the transition matrix element M from which the process of interest is calculated.

We first identify the enhanced corrections at one-loop order and turn to higher orders (and
the resummation) afterwards. To address point i) we decompose £ in the usual way as
L = Lien+ Lct, where L,y is obtained from £ by replacing bare quantities by renormalised
ones and L. contains the counterterms. Loop effects only reside in L. and the quark
mass counterterm dmy is a source of tan S-enhanced corrections. We write my for the

(0)

renormalised mass, so that the bare mass reads m;, ~ = my + dmy,. The mass term in £ is

L= — mPbgrby — m{7brbr = — mybb — Smybrbr, — 6mi brbg. (2.1)

Here we have taken into account that dm; must be complex to render my real if the
loops canceled by émy, involve complex parameters. We further decompose the self-energy

Yu(p) as

So(p) = p [SH (%) P+ S5 () Pr| + S (0P + SEE(P) Pr 22)
) .

with - p(p%) = (37 07)"

where P, p = (1 F75)/2 and p is the external momentum. If the mass is renormalised

on-shell, i.e. if my coincides with the pole of the propagator, the counterterm reads

my

L [SEE () + SER(md)] — S ). (23)

omy = —

The second term E{)%L(mg) contains pieces proportional to y,v sin 8 and is therefore tan (-
enhanced compared to the tree-level term my = ypv cos 8. These contributions are depicted
in figure 3 and read:

SEL = myA, with A, = AT+ A +AY (2.4)
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Figure 3: tan S-enhanced self-energy diagrams with (from left to right) gluinos, charginos
and neutralinos.

and
AV = %%811&29 e~ i% . [B (mg,m; ) — Bo(mg, m; )} (2.5)
b7 3rm b o\Mg, My, o\mg, My, )| .
P Z e U* V5o sin20,e'%
b 1672 COSB 22 My m2
[Bo( Mgt , my,) —Bo(m)zg’msg)}
Mt
X 7 Vi [cos 0: Bo(m M, My, ) 4 sin? 6; Bo(m Mgt , My )} , (2.6)
- Mw 2
F 1
AXO — Xm N* N*
b 16\/_7'('2 COSﬁ Z m3

. [cos2 Oy By(mszo ,mg,) + sin 20, By (mzo,, my, )] . (2.7)

In (2.7) we have neglected some numerically small contributions: first, a term proportional
to ¢’? stemming from the bino component of the neutralinos is omitted. Second, a numeri-
cally small term proportional to g2 (which moreover is suppressed by (v/Msysy)? for large
Msgusy and is therefore absent in the effective Lagrangian of eq. (1.2)) is neglected. Clearly,
we have also discarded terms suppressed by mg /MS2USY; in particular EbRL is evaluated for
p?> = 0. Whereas in the effective-theory approach the tan $-enhancement was easily recog-
nisable by the coupling to H,, in the diagrammatic treatment it is hidden in the elements of
the mixing matrices. Using the analytic expressions for these matrices listed in appendix A,
i.e. identities like eq. (A.10) and eqgs. (A.19)—(A.22), we can derive formulae for the gluino-

and chargino-contributions in which the tan S-enhancement becomes explicit. Writing

Ag( = e,f( tan 3 for K =g,X7, %" and € = eg + egi + el);‘o (2.8)
we find
g 2a N
e = — 37Tsm§,u Co(mg7m51,m52), (2.9)
X* yt2 x ok 2 § * 0k 2
6 = —1ey Aju (Dy — [Maf* Do) + to— 1" M <D2 —mERD()), (2.10)

where Do o = Do a2(m Mgk, Mg mg, ,mz,). (The tan f-enhancement of AX is already man-

ifest in eq. (2.7) through the factor 1/cos 8 ~ tan3.) Formulae analogous to egs. (2.5)—-
(2.10) are also valid for the corresponding self-energies of the d- and the s-quark with the



stop and sbottom masses appropriately replaced by the corresponding squark masses of
the first or second generation. egs. (2.5)—(2.10) generalise the well-known expressions of
ref. [44] to the case of complex MSSM parameters.

Different renormalisation schemes correspond to different choices of L., hence the
analytic form of the tan #-enhanced corrections depends on the chosen scheme. If we want
to use a numerical value for m; determined from low-energy data, we must apply an on-
shell subtraction to the supersymmetric loops as in eq. (2.3) (which is the appropriate
“decoupling scheme”). To leading order in tan 8 this means

omy = —EEL = —myep tan 5. (2.11)

At this point we recall that the loops constituting ¢, are finite, just as all other tan -
enhanced loops appearing in this paper. Therefore all counterterms and all bare quantities
discussed are finite as well. We write the bare Yukawa couplings as yéo) = yp + Oyp, Where
yp is the renormalised coupling and dy;, is the counterterm. The choice of dmy fixes dyp

through
om

oyp = el - —yp€p tan 3. (2.12)
Vd

The supersymmetric loop effects encoded in ¢, enter physical observables only through
dyp. Choosing e.g. a minimal subtraction for dm; would remove the tan S-enhanced term
from eq. (2.12) and there would be nothing to resum. However, in this scheme the input
value for my is obtained from the measured bottom mass by adding mye, tan 3. Thus the
inferred value of y, = my /vy will implicitly contain the tan -enhanced corrections, so that
physical observables are scheme-independent [21]. In a practical application one must also
address the renormalisation from ordinary QCD corrections. Whenever we refer to the MS
mass my we imply that the MS prescription is applied to the quark-gluon loop only, while
we always subtract the supersymmetric loops on-shell.

Now, are there other sources of tan $-enhanced one-loop corrections in L¢? There are
renormalisation schemes proposed in the literature in which the counterterm to tan 3 is
proportional to tan? 3, so that eq. (2.12) would receive an additional contribution. This
feature is obviously absent for the commonly used definition of tan 3 in the DR scheme.
Finally the one-loop renormalisation also involves wave-function counterterms. Those of the
quark fields are not tan S-enhanced and the wave-function counterterms of the Higgs fields
drop out if the Higgses solely occur in internal lines of the diagrams. (These counterterms
nevertheless play a role in schemes in which the counterterm 6 tan 3 is derived from wave-
function counterterms and counterterms to the vevs. This subtlety is absent for the DR-
defined §tan 3.) The issue of tan § renormalisation is thoroughly analysed in refs. [45-47]
and was recently studied for quark flavour physics in the context of the effective-field-theory
method [36, 37]. In our diagrammatic approach, where the issue is somewhat simpler, the
topic of tan 3 renormalisation is briefly discussed in ref. [42] in an application to the muon
anomalous magnetic moment. In conclusion, the only source of tan S-enhanced corrections
in L is 0yp of eq. (2.12) unless an inappropriate definition of tan 3 is adopted.

Next we turn to the second point mentioned at the beginning of this section. In
order to identify tan S-enhanced corrections to a given transition matrix element M we



must distinguish two cases: in the first case the leading-order contribution to M has no
suppression factor of cot § in any coupling. Examples for such unsuppressed couplings
are those of A and H® to down-type quarks, the HT coupling to right-handed down-
type quarks or any gauge coupling. In this situation M can only have a tan S-enhanced
correction if the loop integral involves at least one inverse power of my, which combines with
yp X my tan G to a factor of tan 5. The presence of such inverse powers of my, is related to the
infrared behaviour of M for m; — 0. This behaviour can be studied by matching M onto an
effective matrix element Mg which is obtained from M by contracting all lines of particles
heavier than my, to a point [21]. This analysis should not be confused with the effective-field-
theory method described in the Introduction: Here only Msysy, v, M g0, Mo, Mg+ > my,
is assumed, with no assumption on the hierarchy between Mgysy and v. The result of
ref. [21] is that no such tan #-enhanced correction from genuine multi-loop diagrams occur
in the first case. The second case deals with matrix elements M with an explicit cot 3-
suppressed coupling (such as the h° coupling to down-type quarks or the H* coupling to
left-handed down-type quarks) in the leading order. Here the situation is different, but
trivial: an explicit one-loop vertex correction lifts the suppression and this tan S-enhanced
correction does not replicate itself in higher orders [38, 39].

We now discuss higher orders of the perturbative expansion and the resummation:
while no genuine multi-loop diagrams give enhanced corrections, there are one-loop dia-
grams involving lower-order counterterms dy,. We make the y,-dependence of the self-
energy explicit by writing $7*(y;). The Yukawa coupling y, enters X2 (yp) either directly
via the quark-squark-higgsino-vertex or indirectly via the sbottom mixing angle. Now, let
us consider such self-energy diagrams in which one or more of the couplings ¥, are replaced
by the counterterm dy,. The mass counterterm dmy reads

Smy, = vadyp = — St (yp + Syp). (2.13)

to all orders of the perturbative expansion and to leading order in tan 3. Let us denote the

n-th order contribution to dy; by 6yl()n). We can solve eq. (2.13) recursively, by expressing

5y£n) in terms of 6yén71). Effectively 5y£n) is simply computed from the one-loop diagrams
contributing to EEL including all possible substitutions of ¥, by 5y,()k), k=1,...n—1.
Adapting eq. (2.4) and egs. (2.8)—(2.10) to account for the desired higher-order terms

we write
P ml()O)Ab = yéo)veb sin 3. (2.14)
(0) (0)

Whenever EfL is linear in y, ’, that is if €, does not depend on y, ', one can easily determine
dyp to all orders: noting that y, = my /vy the one-loop result of eq. (2.12) is replaced by
my €y tan g

_—— 2.15
vg 1+ €ptan g ( )

m
oyp = _v_b [eptan 8 — (ep tan 3) + (e tan B)° —...] =
d
If we discard the neutralino contribution and take eg and egi from egs. (2.9) and (2.10),
we indeed find €, independent of y,. There is a shortcut to eq. (2.15): adding my = ypvg
to both sides of eq. (2.13) gives

vdyl()o) =my — yl()o)vdeb tan 3 (2.16)
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(0)

which is easily solved for y,  resulting in the resummation formula of ref. [21]:

SO _ my
b Ud(l —i—ebtanﬁ)'

(2.17)

The linearity of eg —i—egi in y, beyond the decoupling limit appears to contradict the dis-
cussion in the Introduction, since the hedgehog diagrams of figure 2 contain any odd power
of y,. However, these additional factors of ¥, are implicitly contained in the sbottom mass
eigenstates mg, - From this observation it becomes clear that for the correct resummation
of the tan B-enhanced corrections one must clearly state the renormalisation scheme for the
supersymmetric parameters. eq. (2.17) implies an on-shell scheme for the sbottom masses
meaning here that mg, , are used as inputs. By contrast, many supersymmetric analyses
use the diagonal elements of the mass matrix, L and the p parameter (entering the
off-diagonal elements) as inputs. In this scheme y;, enters the problem explicitly via the
mass matrix and eq. (2.17) is not correct. Similarly, eq. (2.17) must also be modified if
the sbottom mixing angle 0, and the mixing phase éb are used as input parameters. These
parameters are the natural choice for applications to collider physics, especially once the
bottom squarks are discovered and their properties are to be studied. It is therefore of ut-
most importance to control the definition of 6, in particular if constraints from low-energy
data shall be combined with collider physics. We analyse this point in section 2.2.

In summary, whenever M does not suffer from cot S-suppression in the leading order,
all tan -enhanced corrections stem from dy,. The dominant contributions from gluino
and chargino loops can be resummed to all orders at the Lagrangian level, if an adequate
scheme for the sbottom mass parameters is adopted. We stress that the resummed terms
are local, so that one can reproduce the resummed effects from an effective Lagrangian. The
effective br,brHC, bpbrA® and T bpH ™ couplings are simply obtained by replacing the tree-
level Yukawa coupling with yl()o) in eq. (2.17). That is, the description of these couplings
by an effective Lagrangian does not require any assumption on the size of Mgyusy: e.g.
the use of eq. (2.17) also correctly resums the tan S-enhanced corrections in high-energy
collider processes, even if the momenta of the particles involved are of the order of Msygy.
Further the results of ref. [21] also extend to other couplings in the MSSM Lagrangian
which are governed by y,: also in the higgsino couplings of the charginos and neutralinos
the use of eq. (2.17) correctly resums the enhanced corrections, irrespective of the sizes
of the momenta and masses involved. The Feynman rules for these effective couplings are
listed in appendix C. However, the situation is different for a cot S-suppressed process:
here the enhanced one-loop correction depends on the kinematics of the studied process.
For example, the coupling of the Standard-Model-like Higgs boson k" to fermions involves
tan B-enhanced momentum-dependent one-loop form factors.

2.2 Sbottom mixing and resummation

As an introductory remark, we note that the resummation issue is simple if one interchanges
the roles of y, and m;: choosing dy, as input will fix dm; through eq. (2.13), there are no
enhanced corrections beyond one-loop order and any non-linear dependence of E{)%L on yp
does not pose a problem. This avenue has been pursued in section 2 of ref. [21]. Yet in
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any phenomenological application we face the fact that we have precise data on my and

not on yp, so that we are stuck with the task to invert eq. (2.16). We discuss this for three

well-motivated schemes for the sbottom mass matrix here:

(i)

Input: mgl, mgg; W, tan 8

If we express the sbottom mixing angle 8, and phase ¢ in eq. (2.5) through our input
parameters, using relation (A.10), the bottom mass in Ag cancels and we find the
gluino and chargino contributions to E{;?L to be linear in yp. This is the case used to
illustrate the resummation in eq. (2.15). If we assume the neutralino contributions
to be linear in y;, too, we arrive at

) _ My

Yp | = m- (2.18)

(

o+ o+
The chargino contribution Z?L’X = mbO)A?f is always linear in y, it is not influ-
enced by our choice of input parameters since no bottom squarks are involved. The

~ S0
neutralino contribution SELX" = ml()O)A?f in (2.7) can be rewritten as

4
RL,X° Ybg M0 =y s
e = > 2 NpyoNpis - Bo(mgo, ,my,) (2.19)

B yb92 mxo, ﬁ;ﬂ;g sin 91, <BO( 0, My, ) — Bo(mgo , My )) ,

167 t V2 1 00 Tty
where the first line is linear in ¥, but the second line is found to contain terms of third
order and higher in y; after insertion of (A.10). In the decoupling limit Mgysy > v,
these higher order terms, which are proportional to sin® 0y o v2 /MS2Usy, vanish
and the neutralino contribution is correctly included into (2.18). For Mgysy ~ v
on the other hand, the higher-order terms spoil the proper resummatlon because
equation (2.13) cannot be solved analytically anymore. As AX is small anyway,
formula (2.18), though not entirely correct in this case, still holds to a very good
approximation.

Input: mgl, mli; éb, (55,

Assuming that some day it will be possible to measure 6, and qu, we could take
these quantities as our input instead of p and tan 3. In egs. (2.5) and (2.7) Ag and
Ai{“ are directly given as a function of 6, and ¢. Obviously, EfL’g (O)Ag does
not exhibit any explicit y,-dependence in this case, so that no reinsertion of dy; into
EfL’g is possible (it is absorbed into the physical mixing angle). The neutralino con-

— -
tribution EbRL’X on the other hand is linear in y, if we choose 6}, as input and it can
be properly resummed now, in contrast to case (i). The modified relation between

(0)

Yy~ and my then reads

my 1—A£’
va 14+ AY + AY

y()—yb+5yb

(2.20)
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Note that this scheme does not involve an explicit tan S-enhanced counterterm to
0y. The implicit resummation encoded in a “measured” value of 8, must, however,
be taken into account in a proper analysis of the MSSM parameter space: in the
large-tan 3 limit eqs. (A.5) and (A.10) imply a correlation between yl()o), w1 and our

input parameters:

. _ 9 (0)x v
€% sin 26, = — —bHu (2.21)
mél — mBQ

(0)

That is, in scheme (ii) p inherits the large correction from g, because the product
yl()o)* p is fixed. Since p enters the chargino and neutralino mass matrices Myx.0, one
should solve eq. (2.21) for p, use the value in Y and repeat the steps iteratively
until egs. (2.20) and (2.21) are sufficiently (i.e. up to the neglected cot S-suppressed
correction proportional to Ap) compatible. As a corollary we remark that a measure-

ment of my _, 0, and p (which can be inferred from chargino or neutralino masses)

completely fixes |y£0)| through eq. (2.21) if tan § is large. Once |y£0)| is known the
coupling strengths of A and H to bottom quarks are fixed. ]y,()o)\ enters the pro-
duction cross sections of these particles and cannot be studied in A°, H? decays to b
quarks at the LHC because of the large bb background from QCD processes.

(iii) Input: mgL, m%R; 1, tan G
As the masses and mixing angles of the SUSY particles are not measured yet, this set
is the most prominent one because its elements directly appear in the Lagrangian. In
terms of these input parameters, the mixing angle can be expressed with the help of

3 = 200" v,
e tan 20, = ——b (2.22)
me —ms?
by bR

Since A“Z is proportional to sin 26, = tan26,/(1/1 + tan?26,) and in addition the

squark masses appearing in the loop functions have to be replaced by m% and m%
L R

via (A.8), the y,-dependence of Ag gets so complicated that (2.13) cannot be solved

analytically anymore. This problem can be avoided in the following way: in a first
approximation, we determine mgl

, from (A.8) using the tree level value for y,. Now
we can calculate Ay as a function of the parameter set (i). In a next step, the resulting

modified Yukawa coupling (2.18) can be reinserted into (A.8) to get corrected values
for m%m. This procedure has to be repeated until the value of A, converges. The
resummed Yukawa coupling is then given by (2.18). Alternatively, we could calculate
Ag and A? iteratively as a function of the input parameters (ii), determining sin 20,
from eq. (2.22). In that case, eq. (2.20) provides the resummed Yukawa coupling.
Eq. (2.18) has the same form as the widely-used relation between yéo) and my, valid in the
decoupling limit and quoted in eq. (1.5). Therefore we will take parameter set (i) as the

physical input from now on.
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Figure 4: tan f-enhanced flavour-changing self-energy

3 Flavour mixing at large tan 3

In the effective-field-theory approach the resummation of tan S-enhanced effects in flavour-
changing transitions is achieved in the same way as in the flavour-conserving case: one cal-
culates loop-induced couplings of H,, to quarks, now taking flavour mixing into account. Af-
ter the Higgs doublets acquire their vevs the down-quark mass matrix is diagonalised. In the
basis of quark mass eigenstates we face flavour-non-diagonal Yukawa couplings, as expected
in a general 2HDM [22, 23, 30, 34]. This method is correct for Msusy > v, M 40 yo g=. In
this section we extend the resummation of tan S-enhanced effects to the case of any hierar-
chy between Mgysy and v to cover the natural situation Msysy ~ M 4o go g+ ~ v. First,
our results allow us to assess the accuracy of the decoupling limit used in the literature.
Second, we access a new field and calculate the tan S-enhanced loop corrections to genuine
supersymmetric couplings: for instance, the gluino-quark-squark coupling, which is flavour-
diagonal at tree-level, receives enhanced FCNC loop corrections just as the neutral Higgs
bosons A and H? do. These effective FCNC couplings of supersymmetric particles cannot
be studied with the effective-field-theory approach, because these particles are treated as
heavy and are integrated out.

Our diagrammatic treatment of tan S-enhanced loop corrections can easily be gener-
alised to the flavour off-diagonal case. In the naive MFV framework, tan $-enhanced flavour
transitions only arise from self-energies of down-type quarks involving chargino-squark ex-
change (see figure 4). In the case of d-s-transitions, the stop contribution is suppressed by
ViiViq. Since we neglect the small Yukawa couplings of up and charm and take degenerate
masses for @ and ¢ squarks, the @ and ¢ contributions to d-s-transitions vanish because of a
GIM cancellation. For the flavour-changing self-energies involving a bottom quark we find

m;éepc tan O

nEiL = VY, e e e
) (V) ‘/tl‘/tjl—i-ﬁitanﬁ’

for (i,7) = (3,1),(3,2),(1,3),(2,3).  (3.1)
Here the unitarity of the CKM matrix and the mass degeneracy of the 4 and ¢ squarks
have been used to factor out the CKM combination V;;V;;. The explicit expression for €pc
in terms of the stop mixing-parameters 0;, ¢; and the chargino mixing matrices U, V reads

2
1 g = (Yt

- _ B U* |:_V>k

¢ T T6n2 \2Myy sin 3 mZ::l M me g Tm

2 sin 2ét6i¢t <BO (mf(i ’ mt~1 ) - BO (m)z;% ) mt~2 ))

—gV, ((:os2 étBo(mﬁl,mgl) + sin? étBo(mi%,mﬁ) — Bo(mgx, mq)>] , (3.2)
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s, br by, br, br S,

(1) (2)

Figure 5: Feynman diagrams with flavour-changing self-energy in an external leg.

with mg denoting the common mass of the left-handed first and second generation squarks.
If one wants to express €pc in terms of the SUSY-breaking parameters instead, one can use
the relations given in appendix A to find

2 2
Yt * 2 g * 2
€pc — — WAt M* (D2 — |M2| DO) "’ —1671'2 MQ*IU, <D2 — mERDO — CO) (33)

where Dgo = Do,g(mﬁ,m%i,mgl,mﬁ) and Cy = Co(mﬁ’myét’m‘i)' Eq. (3.3) makes
clear that epc and thus also the tan S-enhanced flavour-changing self-energies are directly
linked to the SUSY-breaking sector of the Lagrangian. They vanish if M, and A; are set
to zero. The part of exe which is proportional to g2 is absent in the decoupling limit with
mg,
low-energy flavour observables. The first option, explained in section 3.1, is to consider self-

= mg. We next present two different ways to account for ¢ in practical calculations of

energy corrections in external quark legs. The second possibility, discussed in section 3.2,
involves a flavour-non-diagonal wave-function renormalisation for the quark fields, which
enters the Feynman rules of the couplings of quarks to SUSY particles and Higgs fields.

3.1 Flavour-changing self-energies in external legs

Consider the generic situation of a self-energy subdiagram in an external quark leg of some
Feynman diagram, as displayed in figure 5 for the case of an external s quark. In flavour-
conserving transitions such self-energies in external legs are truncated, they instead enter
the S-matrix elements through the LSZ factor (“external wave-function renormalisation”).
However, if the truncation affects a particle with a different mass than the external par-
ticle, the diagram with the external self-energy can be treated in the same way as a 1PI
vertex correction [48], provided that the mass difference is much larger than the self-energy
diagram. Despite of the tan f-enhancement, this condition, which reads my—ms > |Zs| in
our case, is certainly fulfilled because the self-energy Y, is CKM-suppressed by a factor of
VisVy. Treating external self-energies as 1PI diagrams makes the origin of the large effects
most obvious. The alternative approach, which truncates all self-energies and introduces
flavour-non-diagonal wave-function renormalisation, is discussed below in section 3.2. Of
course, both methods lead to the same results for physical amplitudes.

For definiteness we consider diagrams with external s or b quarks (figure 5). The case
of b-d transitions is obtained by obvious replacements. For ms = 0 the Feynman amplitudes
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are given by

rest Z(p + mb) - RL rest x €rc tan B
= Ca | (Fiy) = - VisVip 3.4
Ml Ml p2 _mg pzo( (3 bs ) Ml ts tbl +Ebtan/8’ ( )
i(p + ms) , €rotan
Mo = Miest. M 27 i RLxy FMESSE LY FC ‘ 3.5
2 2 p2 _ mg ]é:mg’c’le( Llaps ) 2 tsVtb 1+ GZ tan 3 ( )

Here, M} stands for the part of the Feynman amplitude corresponding to the truncated
diagram. The expressions (3.4) and (3.5) are of order O(egc tan 3). Thus, if a large value
of tan 0 compensates for the small ez, it is possible to get a b — s transition without
paying the price of a loop suppression.

There is one important physical process for which even diagrams with two self-energies
in external lines must be considered: in b — sv the expansion of the diagrams to lowest
order in my/Mgusy understood in egs. (3.4) and (3.5) gives zero. One therefore has to
consider contributions of higher order in this ratio. This means that in eq. (2.3) the
right-hand side has to be expanded to order mg /MbgUSY in order to find the appropriate
counterterm dm;, whereas only the leading term was kept in section 2. We stress that
this expansion does not spoil the resummation of the counterterm. Now let us have a
look at the b — svy-diagrams in figure 6. We observe that an insertion of dmy like in
the lower-left diagram (denoted by a cross) cancels only partially with a corresponding
flavour-conserving self-energy insertion like in the upper-left diagram if we perform an on-
shell calculation of the amplitude. The reason is that dmy in eq. (2.3) is determined at
p?> = m3 while the self-energy is probed at p? = 0. The remnant is of order O(m? /Mgy ),
just as the contribution that we find from the vertex correction in the upper-right diagram.
For completeness, we mention that some non-tan $-enhanced contributions are canceled by
insertions of on-shell wave-function counterterms of the bottom quark like the one shown
in the lower-right diagram (also denoted by a cross). Summing up all the diagrams yields
a gauge-invariant result of the order (my/Msyusy)? €i tan? 3 times another loop factor,
which is the same order as the leading supersymmetric one-loop contribution to b — sv.

It is natural to ask whether the above effect, i.e. the generation of tan G-enhanced b — s
transitions via self-energy insertions, also occurs for internal quark lines. It is important
to notice that the tan S-enhancement in egs. (3.4) and (3.5) is generated by the fact that
the quark propagator —i/my, cancels a factor of m; in EﬁL. A potential 1/mj-dependence
of some loop integral would originate from the low momentum region p? < MSQ,USYv but we
have constructed the mass counterterm dm; in section 2.1 in such a way that it subtracts
the self-energy insertion in this momentum region. Therefore we only need to worry about
situations similar to b — s, in which higher orders of m;/Mgysy are relevant. However,
we are not aware of a meaningful physical process in which an internal b line is responsible
for a 1/m;, singularity in this way and do not consider this possibility further.

Before investigating the further consequences of the tan 8-enhanced flavour transitions,
we want to point out a subtlety of equation (3.5). The b-quark mass which enters the prop-
agator via the equation of motion is the pole mass mprle. The b-quark mass appearing in
E{EL, on the other hand, is the MS-mass m;. However, if QCD-corrections to the diagrams
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Figure 6: Diagrams with self-energies in external lines for the process b — s7.

of figure 5 are taken into account, additional contributions add to the MS-mass in EESL to

. pole
give the pole mass m; .

Therefore the b-quark mass correctly cancels from eq. (3.5). A

detailed analysis of this feature can be found in appendix B.

dj

N

U;

W,

Figure T: Generic
enhanced correction
to ‘/ij .

Now, let us consider the tan S-enhanced corrections to the
ui-dj-W-vertex (see figure 7). We apply an on-shell renormali-
sation condition to V;; and cancel the contribution from the self-
energy diagram at p? = 0 by a counterterm 0V;;. In this way the
renormalised V' corresponds to the CKM matrix measured from
low energy data.? We find

oV = _VikAkj7 with
mq.
2 & 2 Eéjf + 2mdk 2 EﬁL ) k #j
0 k=7

Note that 0V;; never involves less powers of the Wolfenstein pa-
rameter A than V;;. The bare CKM matrix VO reads

VO v 46V =V(A-A) ~Ve ™. (3.7)

This shows that the chosen renormalisation condition preserves the unitarity of the CKM

matrix because the matrix A is anti-hermitian.
From eq. (3.1) we find that the corrections dViq, dVis, Vi and 6V, are of order
O(epc tan 3) and so can be comparable in size to the corresponding tree-level quantities

Vij. Hence, the situation is the same as it was for the flavour-conserving self-energies

in section 2.1: reinsertion of the counterterms 0V;; into the diagram of figure 7 leads to

contributions which are formally of higher loop order but also of higher order in tan 3. To

resum these corrections we generalise eq. (3.6) to all orders in perturbation theory as

0Vij = =(Vik + 8Vix) - Mg (V + 8V), (3.8)

2Therefore our V corresponds to VT of ref [35].
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which is in complete analogy with eq. (2.13) for the flavour conserving case. Note that
the enhanced flavour-conserving corrections associated with g, are already properly re-
summed in eq. (3.1) through the factor of 1/(1+¢; tan 3). We have two possibilities to deal
with eq. (3.8). Firstly, we can expand the r.h.s. order by order, deduce a recursive relation
between the CKM counterterms 5VZ§ ") and 5V(n 2
Secondly, we can add V;; to both sides of eq. (3 8) and solve the resulting matrix equation

and perform the resummation explicitly.

VO =y —yO@. A O) (3.9)

for V(0. Inserting Ay;(V(®) from eq. (3.6) with ERL ELR* from eq. (3.1) into eq. (3.9)
yields

1 m? ch tan 3 m2epc tan 3
AN }: 0)y/(0)%y,(0) k . 3.10
i & ik Ytk tj mi—m% 1+ejtanﬁ+ 1+ ¢eptan 3 ( )
J

Neglecting small quark mass ratios and ignoring the tiny corrections to the Cabibbo matrix
we obtain the solution

Vud Vus K*Vub
VO = | Vg Vi KV |, with K =
KV KVis Vi

1+etan(
1 + (Gb - EFc)tanﬁ.

(3.11)

We recognise that this amounts to a renormalisation of the Wolfenstein parameter A,

1+ ¢ tan 3

A0) —
1 + (Eb - fpc) tanﬁ

(3.12)

Possible complex phases can be absorbed by the usual rephasing of the top-quark and
bottom-quark fields (with the same phase for the left- and right-handed fields). In order
to preserve supersymmetry, one should then perform the same rephasing also for the stop
and sbottom fields.

Comparing eq. (3.11) to results of calculations in effective-theory approaches [23, 25,
35, 36], where the SUSY particles are integrated out at a scale much higher than the
electroweak scale, we see that the results are identical in the limit Mgysy > v, as they
should be. Yet our result eq. (3.11) provides an explicit resummation of the tan S-enhanced
flavour-changing effects to all orders in perturbation theory and is also valid in the case
where the SUSY mass-scale is similar to the electroweak scale.

3.2 Renormalisation of the flavour-changing self-energies

The second possibility to deal with flavour-changing self-energies is to absorb them into
wave-function counterterms. In this approach, no external-leg corrections have to be taken
into account in the calculation of transition amplitudes. Instead, the effect of flavour-
changing self-energies now resides in the wave-function counterterms, which enter the vari-
ous couplings of the quark fields. In particular, the wave-function counterterms render cou-
plings which are flavour-diagonal at tree-level flavour-changing. Furthermore, this method
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permits an easy incorporation of the resummed tan S-enhanced effects into explicit Feyn-
man rules for the MSSM. These Feynman rules are collected in appendix C and can be
readily implemented into computer programs like FeynArts [49, 50]. They include for ex-
ample flavour-changing gluino couplings, which have previously been found by Degrassi,
Gambino and Slavich in ref. [51]. We will see that these counterterm couplings are indeed
enhanced by a factor of tan 8 and therefore determine them to all orders in the perturbative
expansion, which has not been done in ref. [51]. The scope of ref. [51] is the calculation
of the supersymmetric strong corrections to b — s+ for all values of tan G, while we are
interested in the leading power of tan (8 only, albeit to all orders in perturbation theory
and with the effects of all gauge couplings and of the large Yukawa couplings y; and .

We next present the flavour-changing wave-function counterterms and reproduce the
result for the renormalised CKM matrix of the previous section: the renormalisation of the
CKM matrix with the help of wave-function counterterms has been first studied by Denner
and Sack in ref. [52] for the Standard Model, where an on-shell scheme has been chosen.
That is to say, the wave-function counterterms have been defined in a proper way to cancel
flavour-changing self-energies when one of the external quarks is put on the mass shell.
Later Gambino, Grassi and Madricardo [53] have argued that this on-shell prescription
can lead to gauge-noninvariant results and have given a renormalisation prescription for
the flavour-changing two-point functions at zero external momentum p. As long as we
neglect the external momenta in the calculation of the SUSY self-energy diagrams, there
is no difference between the two approaches and the naive on-shell subtraction of flavour-
changing self-energies in external quark legs gives gauge invariant results. Only chirality-
flipping self-energies EZ}-;L in the down sector are tan #-enhanced. Therefore only down-
quark fields have to be renormalised according to

0 1 0 1
d; ) = <5ij + 5525) djp, d; ) = <5ij + 552{?) djr (3.13)
and their wave-function counterterms are anti-hermitian:

0Z = —=6Zf7,  0Zi =—0Z]". (3.14)
The wave-function renormalisation (3.13) corresponds to a unitary transformation of the
down-type quark fields in flavour space. We will see in the following that this implies,
in combination with a suitable renormalisation of the CKM matrix, that couplings of the
Standard-Model particles to one another are unaffected by our renormalisation. In this
way, no flavour violation occurs in the couplings of the photon, of the Z° boson, or of the
gluon, as required by the decoupling theorem.

The rotation of the quark fields in eq. (3.13) affects the down-quark mass terms of the
Lagrangian (cf. eq. (2.1)) as

—=(0 1 1 -
L= = mQ dpd ) +he. = — |m 5+ 5m)0 2} — Smi)6 21| &y dyp+hec. (3.15)
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Figure 8: Higher-order tan f-enhanced contributions to Eg-l’ .

Subtraction of the flavour-changing self-energies at vanishing external momentum amounts
to the condition

R
5Z 2 (0) 0Zj;

RL (0)
R a4 g

=0, i 7, (3.16)

for 525’}% with Eg.L given in (3.1). Here the bare masses mgz) = mg, + dmg, contain
the tan B-enhanced corrections associated with the mass counterterms dmg, calculated in
section 2.1.

The explicit expressions for the anti-hermitian one-loop counterterms in our scheme
follow directly from the condition (3.16) and its complex-conjugate version. We find

521% (0) ERL _|_m(0)ELR

= for i # j. (3.17)
0
2 |m£lj)|2 — |md,)|2
SzR m(Q)E-L»R +m *ERL
o 4y 4 for i % j. (3.18)

0) 0
2 ’m&j 2 — ‘méi)‘z

From these formulae it is obvious that the counterterms 5Z£’R are tan J-enhanced. How-
ever, the strong hierarchy of the quark masses implies that 625* is always suppressed by a
small ratio of masses whereas 525 is not.

We want to stress that in the expression for EZ}-;L in eq. (3.1) the momenta of the
external quarks are neglected. As a consequence self-energies in external quark lines are
subtracted by the counterterms 525’}% only up to terms suppressed by the small ratio
ma,/Msusy. Therefore in calculations where higher order terms in the momentum ex-
pansion are relevant one has to take into account the corresponding one-particle-reducible
diagrams explicitly. One example for such a process is b — s7.

Up to now we have considered the flavour-changing self-energies only at the one-loop
level. Are there also higher loop contributions which are tan G-enhanced? In the flavour-
conserving case such contributions stem from insertions of the counterterm &y, into the self-
energy diagrams and are already included in eq. (3.1). To study the new flavour-changing
effects let us now consider self-energy diagrams with wave-function counterterms 5Zi§ and
5Zg at vertices involving a gluino, a chargino, or a neutralino. These diagrams generate
further contributions to Ef}L (see figure 8). The resulting diagrams are tan S-enhanced and
of the same order in the Wolfenstein parameter A as the original flavour-changing chargino

ERL

diagram. Formula (3.1) for is then generalised to all orders in perturbation theory as

87 6zt
ERL(5Z£,5ZR) V;EO) Vtg )mg])chtanB—l— 5 méo)eltanﬂ— 2” mgj)ejtanﬂ. (3.19)
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J

counterterms which then also should be included into the self-energies. Replacing EgrL and
EZ-L].R in egs. (3.17) and (3.18) by Ef;L(éZé,éZg) and EiLjR(éZl-?,éZg) gives us equations
for the determination of the wave-function counterterms which are valid to all orders in the

In writing V;;” we have anticipated that the CKM elements will obtain tan 3-enhanced

perturbative expansion. Again, they can be solved either order-by-order through explicit
resummation or simply by solving the coupled equations for the resummed counterterms
5Z£’R obtained by inserting eq. (3.19) into egs. (3.17) and (3.18). For i = d, s we find to
leading order in mg, /my:

5ZbLz‘ 5Zi%* erctan 8 _ (0)«,(0)
= — = — V., "V 3.20
2 2 1+etanps 0 87 (3:20)
6Z£z _ _525;* _mg, [ e tan 3 €rc tan 8 (0)*V(.O) (3.21)
2 2 mp [1+etan  (1+etanp)| % )

The elements of 5Z£’R which do not involve the third generation vanish.
Now we can renormalise the CKM matrix with the help of the resummed left-handed
wave-function counterterms, using the prescription of ref. [52] and neglecting the up-type

counterterms:
] Ek : ik 9 :

On the right-hand side we have again replaced V;; by Viggo) to properly account for the

enhanced higher-order effects.

The resummed CKM counter-terms fixed by this condition exactly cancel the effect
of the field renormalisation of the down-type quarks in their couplings to the W boson so
that only the tree-level coupling survives. We can now insert eq. (3.20) into eq. (3.22) and
(using Vig»o) = Vij + 6Vi;) solve for §V;;. We obtain the same relation between Vig-o) and V;;
as found in eq. (3.11) with the method of the previous section. We may now express 5Z£’R
in terms of the physical CKM elements: inserting eq. (3.11) into egs. (3.20) and (3.21) gives

§zk S§Zk t

U= = ViV fro ton 7 : (3.23)
2 2 1+ (e — €pc) tan g3

§Z L §Z 5 wr, M, [ €rctan €. tan 3 1+ e tan 8

— = = VaVu— . . (3.24)
2 2 l+etanB  (1+€tanB)| 14 (e — €rc) tan 3

The renormalisation of the CKM matrix beyond the decoupling limit has also been studied
in the second chapter of ref. [35], where an iterative procedure has been used to incorporate
the tan g-enhanced higher-order corrections. We find that our unitary transformations in
egs. (3.13) and (3.14) are formally equivalent to this procedure. Our result in eq. (3.23) is
the analytic expression for the limit to which the iterative calculation of ref. [35] converges.

To summarise, in the previous section we found tan #-enhanced b — s (b — d) tran-
sitions from self-energy insertions into external legs of Feynman diagrams. In the ap-
proach used in this section these self-energy insertions are absorbed into the wave-function
counterterms.
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3.3 Formulation of Feynman rules for the large-tan 8 scenario

We are now in a position to study the influence of tan S-enhanced flavour transitions on
MSSM vertices by means of the counterterms defined above. In particular, we can give
Feynman rules for the large-tan 8 framework in which the enhanced loop corrections are
included and resummed to all orders.

First of all, as already stated above, we have chosen a renormalisation scheme such
that the standard-model vertices remain unaffected by enhanced corrections. In the cou-
plings of quarks to the neutral gauge bosons, the wave-function counterterms drop out by
means of their antihermiticity. The W boson couplings are indeed affected by the field
renormalisation but the renormalised CKM matrix is defined such that the coupling is
given only by a physical matrix element Vj;. As an example, the coupling of the W to top-
and strange-quark reads

. I .
- %WuPL <Vts +0Vis + Vi 5st> = _%W;LPLV;%;- (3'25)

Since we renormalise only the quark fields and not their superpartners, we cannot
expect that the SUSY equivalents of standard-model vertices follow the same pattern. This
is inevitable since the flavour-changing effects which we want to include in our Feynman
rules arise from the SUSY-breaking sector (see section 3). The most striking example for
this property is the misalignment between the flavour-diagonal quark-gluon vertices and
the quark-squark-gluino couplings which receive flavour-changing contributions. From the
unitary transformations in eq. (3.13) we can read off e.g.

. . sZL szt
L > —iv2g,T g = —iv2g, T b} " (bL + st 7‘%@) , (3.26)
which implies the existence of a flavour-violating gluino coupling to a sbottom and a down-
(strange-) quark via the tan -enhanced counterterm 52151(5)' In the approach of section 3.1,
these corrections would arise via tan -enhanced flavour-changing self-energies in the ex-
ternal quark line.

In addition to the gluino couplings, also chargino-, neutralino- and Higgs-couplings
to quarks are affected by tan S-enhanced corrections. Moreover, the bare CKM factors in
various flavour-changing squark couplings (not involving quarks) have to be related to their
physical counterparts by means of eq. (3.11). We summarise all these effects in explicit
Feynman rules for the large-tan 3 scenario in appendix C. These rules are useful for

e calculations of low-energy processes involving virtual SUSY particles and
e calculations in collider physics with external SUSY particles.

As an example, we give here the result for a flavour-changing gluino decay. In the approx-
imation my/Mgyusy =~ 0, the decay rate of g — b b is at tree-level

- = Qs
(G — bib) = 8—7T(m§ — m%i)2. (3.27)
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For the flavour-violating decay § — b; s, we find

= 2 2 2
D(G—bis) [0ZE -, SZE -, szt -,
——~ = R; SR} ~ 5 R; 3.28
F g N bl b 2 il + 2 12 2 11 ( )
Numerically, this ratio is given by
woten | Vi Vis |2 ‘Rb Y0107 (3.29)
1+ (ep — €xc) tan g th¥ts i ' '

4 Phenomenology: FCNC processes

With the knowledge from the previous sections one can now study the effects of tan -
enhanced SUSY corrections in FCNC processes. It is well known that even under the
MFV assumption, supersymmetric contributions to FCNC observables in B physics can be
sizeable if tan 3 is large. The most prominent example is the rare decay By, — pu™p~, in
which the supersymmetric contribution can largely exceed the Standard-Model rate and can
saturate the experimental bound [23, 24, 34-36, 41]. In this section we apply the effective
Feynman rules for the large-tan 8 scenario listed in appendix C to FCNC processes.

Most importantly, in this scenario flavour-changing transitions are no longer mediated
exclusively by W bosons, charged Higgs particles and charginos but also by neutral Higgs
particles, gluinos and neutralinos. For the case of the neutral Higgs bosons, this fact has
been realised first in the framework of the effective 2HDM valid for Mgysy > v [22].
With our effective Feynman rules, we can on the one hand calculate the neutral Higgs
contributions to FCNC processes for the case Mgygy ~ O(v) and on the other hand derive
contributions from other neutral virtual particles, where we will restrict the discussion to
gluinos and neglect the weakly interacting neutralinos.

Since all the flavour-violating neutral couplings are generated by tan S-enhanced flavour-
changing self-energies (or equivalently by the counterterms 5ZbLi and 5Z£ (1 =d,s) from
section 3.2), their numerical importance crucially depends on the parameter ep tan 5. Since
5Z£ is suppressed by a small ratio of quark masses, the most important new contributions
are proportional to 5ZbLi in eq. (3.23) and thus to the parameter combination

€rc tan g3
T4 (e — epe) tan §

(4.1)

It is thus useful to have a first estimate of the size of this parameter. For this purpose,
we neglect the weak contributions to €, and €pe, focus on the non-decoupling part of
expressions (2.9) and (3.3) for eg and epc and set all the SUSY mass parameters as well as
|| and |A4] equal to a single mass scale Mgysy. In this case, the mass dependence drops
out and we find

yi(Msusy)?

39,2 tan f3, (4.2)

|€Fc tanﬁl =

as(Msusy)

|(€p — €pc) tan | = |e£tanﬂ| = .

tan f3. (4.3)
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For tan 8 = 50 and Mgysy = 500 GeV, we find typical numerical values of
lepc tan ] ~ 0.12, |(ep — €rc) tan 5| ~ 0.5. (4.4)

Taking p real here the parameter combination in eq. (4.1) evaluates to

€rc tan G .

~ 0.08, for positive u, 4.5

‘1—|—(eb—ch)tanB P H (4.5)
€rc tan O .

~ 0.24, for negative u. 4.6

‘1+(6b_fpc)tanﬁ g M ( )

Values larger than this for e and thus for the combination (4.1) occur if | A;| is significantly
larger than the masses of stops and charginos. If one requires |A;| < 3mg (where my is an
average squark mass) to avoid colour-breaking minima [54, 55], exc tan 3 gets constrained
to |epc tan Blmax ~ 0.4. Experimentally, the size of A; is further limited by B(B — X,v)
via the tan -enhanced chargino contribution to this process. However, when the complex
phase of A; is taken into account, this bound is much weaker [56]. Moreover, this bound
from B(B — Xyv) may shift when the gluino contribution, which a priori is expected to
be of order |ep tan | times the chargino contribution, is taken into account.

4.1 The effective |AB| = 1 Hamiltonian

Weak |AB| = |AS| =1 decays are usually described by an effective Hamiltonian

4G
Het = ———=Va Vi, C;O; + h.c. 4.7
ff \/5 tb t ; ( )
In the SM the operator basis for radiative and hadronic B decays consists of the four quark
operators

O1 = (8aVuPLes) (s Prba) Oz = (8auPrLCa) (7" PrLbg) (4.8)
03 = (ga'YuPLba) Z(QBWHPLQB) 04 = (go/)/,uPLbﬁ) Z(QBWHPLQQ) (4'9)

q q
O5 = (5a%:Prba) Y (337" Pras) Os = (5o Prbs) Y (457" Prao) (4.10)

q q

and the magnetic and chromo-magnetic operators

gs __

O- = T (50" T PRb) G, (4.11)

mb(EU“VPRb)Fw/ Og

e
1672
In the MSSM with large tan 8 flavour-changing couplings of the neutral Higgs bosons to

the down-type quarks are generated. For this reason the operator basis has to be extended
to include four quark operators with scalar, pseudoscalar and tensor structure, namely

Of, = (5aPrba)(q3PLas) Ofy = (5aPrbs) (45 PLY) (4.12)
0?3 = (gaPRba)(‘jBPRQQ) (9§4 = (gaPRbﬁ)(CYﬁPRqQ) (4-13)
Ofs = (500" Prba)(430,0 PrYs) Ofs = (520" Prbg) (401w PRYa)- (4.14)
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Note that the operators Of, ... 0f; are not linearly independent for ¢ = b or ¢ = s.
In theses cases Of; and Of; can be expressed as linear combinations of the remaining
operators using Fierz identities. We have checked that these operators have a negligible
impact on radiative decays. The same feature was found for hadronic two-body decays in
ref. [57]. The effective Hamiltonian for |[AB| = |[AD| = 1 processes can be found from the
|AB| = |AS| =1 one by the replacement s — d.

Let us now have a look at SUSY contributions to the Wilson coefficients of the operators
O7 and Og: in the SM Or g involves a chirality flip in the external b-quark leg so that C7g
is proportional to my o< cos 8. Therefore SUSY contributions can be tan S-enhanced with
respect to the SM amplitude if the chirality flip stems from a factor of ¥, in the loop. At the
one-loop level the well-known contributions growing with tan 8 are loops with charginos and
up-type squarks. In this context often also the diagrams involving a charged Higgs boson
and a top quark are discussed. These contributions are not tan S-enhanced due to the cos -
suppression of the charged-Higgs coupling to the right-handed top. Since this coupling has
vertex-corrections proportional to sin 3, such diagrams require a different treatment and
are not discussed here. They have been studied by various authors either in an effective-
field-theory approach [38, 39, 58, 59] or in an explicit two-loop calculation [51]. Here we
firstly focus on the chargino contribution. Using our effective Feynman rules we find

1 UVl My )

Co oy — Za2Tal TW [K i) — 2 -
EX " cos B(1 + ¢ tan ) Z{ Vs Falegze) = ¢ fualon5)
ﬁaQ ‘7a2 mye

2 —ig;
—s7 Tz o) FSpcpe Tt —
t f172( t2 Xa )] t-t 2Sln/3m5~€;t

a

[fl,Z(xil gai) - f172($t~2 %ét)] } . (4_15)

with

s; = sin 6y, ¢; = cos by, xij = mi/m;. (4.16)

All loop functions are given in appendix A.3. Again we have assumed that the squarks of the
first two generations are degenerate in mass and denoted their common mass by mg. Our
result differs from the one in [39] only by a factor of K* (defined in eq. (3.11)) in the numeri-
cally small up and charm squark contribution. The stop contribution remains unaffected be-
cause the corrections from the wave function and the CKM counterterm cancel each other.

Besides the well-known chargino and charged-Higgs diagrams, there are now tan (-
enhanced gluino-sbottom diagrams contributing to C7 and Cg (figure 9), which have never
been discussed before in the context of minimal flavour-violation at large tan 8. Like the
chargino diagrams these contributions vanish for Mgysy > v, but can be computed with
proper resummation of the enhanced corrections within our framework.

The tan S-enhanced parts read

V3 Crgutanp i tan

[ETe 3m§(m§1 - mgg) (1+ ¢ tan B) (1 + (¢ — €) tan 3

7 (72(o3,5) = Ralos,g)

(4.17)

,25,



>
N}

5ZL*

bs

X
‘ S ‘ S b hod S

s
/
ol
(S S \
N
-2
s
/
S
|
\
\
N
2
-2

Figure 9: Gluino and chargino diagrams contributing to C7. The photon can couple to
any particle except for the gluino. The contributions to Cg are found by replacing the
photon by a gluon (which can also couple to the gluino).

o V3 gutanp cho tan 3
897 T 4G mg(mgl - mli) (1+ ¢ tan B8) (14 (¢ — i) tan B)
% |Cr (folay,g) = Falay,y)) + Ca (falag,5) = falay) | - (4.18)

The arguments of the loop functions are again given by zq, = m?2/ mg, the colour factors
are Crp = 4/3 and C4 = 3. We remark that the diagram with a gluino and a strange squark
in the loop has been neglected because its amplitude is suppressed by the strange-quark
mass. To have a rough estimate of the size of C7 g5 compared to C7g v+ we again set all
SUSY masses (including |p| and |A;]) to the same value Mgysy. In this case we find

Crg
C77%i

:Eﬁ €5 tan 3|
1557 [1+ (€ — €5c) tan 3]

Csg
C&%i

_ E g_g |€k tan S|
3 7 |1+ (6 — o) tan 5|
(4.19)
Using our estimates for expression (4.1) we find 77 ~ 0.07 and ng ~ 0.42 for positive values

7772' 778:‘

of p and 17y ~ 0.2 and ng ~ 1.3 for negative values of p. It follows that the impact of the
gluino contribution on C7 is small (especially for positive p) whereas the contribution to
Cs can be sizeable. Above we argued that the value of |exc tan 3| can be increased up to
lerc tan B3| ~ 0.4 if we choose large values for |A;|. Of course, the size of C7 g ; gets larger
for increasing values of |epc tan 3. Note, however, that C7 g 5+ is proportional to A; and
thus the ratio n73g, i.e. the relative importance of the gluino contribution, is essentially
unaffected. On the other hand, the gluino contribution grows with increasing |u| whereas
the chargino contribution decreases because it decouples with the chargino mass. Therefore
for large values of |u| the gluino contribution becomes more important. We will perform a
more detailed numerical study of the new coefficients C7 3 and Cg 5 in section 5.
Replacing in figure 9 the gluino by a neutralino, we find tan S-enhanced neutralino
contributions to the (chromo-)magnetic operators. Their analytic expression reads

V2 3 €pc tan 3 L«

X; XR f2(1'~.~ ) R C ~0:1/edc 0
4G i Bmgo My (1+ (¢ — i) tang) "™ " bix%, 8,% 7%
(4.20)

Crxo =~
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with the neutralino-quark-squark couplings

/
e T 0) 3b A7+ V2 i & 0+ 3b A7
Xﬁn = \/iRgl <§Nm2 % m1> - yz(; )R% m3 Xiﬁn = ?QIR%le +y£ : R?lei%-
(4.21)
In our convention, e; = —1/3 is the charge of the down-type (s)quarks. The bare Yukawa
(0)

coupling y, * is determined as explained in section 2.2. We remark that in the product
D e i

i, additional factors of tan 8 from sbottom-mixing and from ylgo) are hidden, but

nevertheless we find the neutralino contributions to be numerically small compared to their
counterparts from chargino and gluino diagrams.

Another one-loop contribution to C7g, stemming from virtual neutral Higgs-bosons,
has been presented in [7] in the effective-Lagrangian approach with vanishing SUSY CP-
phases. In a full diagrammatic calculation, we find for these coefficients

* ¢ 2 tan2 oH°
C77H0 _ E*FC ail/B mb an /32 - ’ 08’H0 _ 7 ] (422)
L+ (e — €5c) tan 8 361 + €, tan 5[2m?, ed

In the decoupling limit, setting all SUSY phases to zero, this agrees with [7] up to the factor
1/eq4. Compared to the other contributions from SM and MSSM particles, corrections from
neutral-Higgs diagrams to C7 g are at most in the few-percent range.

In the following, let us leave the magnetic and chromomagnetic operators and discuss
the remaining parts of the effective Hamiltonian. For the QCD-penguin operators Os_g,
we find contributions from gluino and neutralino loops to be small because of destructive
interference of the two occurring internal squark flavours b and §. This is a remarkable
difference to chargino loops, where this GIM-like cancellation is rather inefficient between
the up-type squarks due to their very different Yukawa couplings. Furthermore, the usual
power-suppression m% /MS2USY is present and cannot be alleviated by a factor of tan § from
the loop since no chirality flip is involved, in contrast to Oz g.

In the semileptonic decay B — X /¢, two semileptonic operators usually denoted
by Og and Q19 come into play. Chargino- and charged Higgs-diagrams contributing to
these operators have been evaluated in [60] (we refer to this publication for the definition
of Oy 10) and it has been found that the corrections to the SM coefficients are small. Due
to the GIM-like suppression described above, we find gluino and neutralino corrections to
be even smaller.

The charged leptonic B decays B;‘ — (Tyy (¢ = d,s) are dominated by tree-level
diagrams with W boson, but may receive sizeable contributions from charged-Higgs ex-
change in the MSSM [27]. The charged Higgs boson couples to a right-handed b quark
and (neglecting y, and ys) the only effect of tan S-enhanced corrections stems from K
in eq. (3.11) and ¢, tan § in the Yukawa coupling in eq. (2.17). The corresponding Feyn-
man rule is given in eq. (C.7). The same remark applies to the other charged-Higgs analyser
B — Dt [28, 29].

Their neutral counterparts Bg — (*t¢~ are loop-mediated, with a dramatic impact
of a large value of tan 3. The phenomenologically most important decay in this class,
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BY — utp~, is described by the effective Hamiltonian

G ViV Y. CiO;+ hec. (4.23)

Heﬁ:_
\/7 i=A,S,P

with the operators

Oa = (57 PLb)(iy" 51 (4.24)
Og = mp(SPLb) (ap) (4.25)
Op = mp(SPLb) (iys1)- (4.26)

At large tan 3, neutral Higgs exchange is known to be dominant since it occurs at
tree-level in the effective theory at the electroweak scale [23], contributing to Cg and
Cp.? Making use of the flavour-changing neutral Higgs couplings from appendix C, we can
generalise the results in the literature to formulae which

e resum all tan S-enhanced mass- and wave-function renormalisation effects
e contain all possible complex phases from the SUSY breaking sector and
e do not resort to the decoupling limit Mgygy > v.

Since the LHCb detector may soon precisely measure the By, — ™~ branching fraction,

an improved treatment of the SUSY contribution to this decay is desirable now. With

2

mHQ -

mio in the large-tan 8 limit, this Higgs-mediated contribution reads?

€rc tan 3 my tan? 3
14 (e — €fc) tan B (1 + € tan 3)(1 + €, tan §)2m?,

Cg=—-Cp=— (4.27)

Here ¢, is the analogue of ¢, for the muon (see e.g. [36, 42]).

4.2 The effective |AB| = 2 Hamiltonian

In order to study the effects of tan 3-enhanced flavour transitions in B — B oscillations, we
write the AB = 2 effective Hamiltonian as

G%mw
Hetr = e 3" (ViiVio) Zco (4.28)

with ¢ = d, s. The dimension-six operators O; are

OV = (by, Pra) (by" Prg), (4.29)
OLR (b7 PLq) (7" Pry), (4.30)

= (bPq)(bPrq), (4.31)
OSLL (bPLq)(bPLq), (4.32)
05" = (bo,u, Prg) (bo* Prq) (4.33)

3The tan S-enhancement was found in a diagrammatic one-loop calculation in ref. [41].
41f tan 8 is small, Z-penguin and box diagrams become important. These contributions can be found in
ref. [61].
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and OVEE Of RE OgRR which are obtained by replacing P, by Pg.

Various contributions to B — B mixing have been obtained in the effective-theory
approach in refs. [22, 30, 33-36]. We specify to B;— B, mixing, which involves numerically
important contributions proportional to mg [30]. The first type of contributions to the
Wilson coefficients of these operators which we want to consider are diagrams with neutral
Higgs exchange analogous to the By — p*u~ diagram in the previous subsection. With
our Feynman rules we find

CISLL _ 16772mg tan? 3 . €2, tan? . F (4.34)

V2Gr My, (1+ e tan )2 (1 + (& — exc) tan §)

CLR _ _ 3212 mymg tan® 3 . |epc tan (|2 F,
V2GpME, 114 ey tan 3] |1 + (e — epc) tan 3|2
1 1 _ 2’L¢ (eb EFC ES) 4.35
<[ ) 1+ e€ftan ( )
with ¢ =arg{epctanf (1 + (e — €p) tan 3)}. (4.36)
Up to terms suppressed by tan~! 3, we obtain here
2
Fi=— , F_-=0. (4.37)
m%o

The contribution from the operator OX% is thus important despite its suppression by
myg since F_ vanishes at large tan 3 [22]. Our result for C3% involves the new term

. (ef —€ef. — € tan
r=(1- e2z¢)( b~ o — &) tanf (4.38)
1+ e€ftan g
Obviously this correction factor r disappears if all parameters are real. It also vanishes if
we go to the decoupling limit and choose all squark mass terms to be equal because in this
case we have

€5 — €0, € — €0 + €pc. (4.39)

For this reason the r-term is absent in [22, 30, 33-36]. Beyond the decoupling limit r
does not vanish even if we set all SUSY-breaking mass terms to the same value because
the squark masses are split due to electro-weak symmetry breaking. However, this effect
is tiny for g > 0 where the correction factor 1/(1 + €, tan3) to the Yukawa coupling
suppresses the off-diagonal element X; = —ybO “vuft in the sbottom mass matrix. In this
case we have |r| < 0.01. For 4 < 0 the off-diagonal element Xj is enhanced and we have
|r| < 0.1. Significantly larger values for r can be achieved if we allow the squark masses of
the third generation to be different from those of the first two generations.® In this case the
new term can be important for mixing-induced CP asymmetries, because |C7*F| is much
smaller than |C4F| (even after loop corrections to F_ in eq. (4.37) are included [36]) and
the imaginary part of C£% in eq. (4.35) stems solely from 7. A benchmark measurement

5Tt should be stressed that this is possible for the right-handed bilinear mass terms but not for the
left-handed ones: in the super-CKM basis one has fﬁZL = V(O)JffﬁﬁLV(O) and the naive MFV hypothesis of

diagonal ﬁlﬁL, m2 2

ur, up,dp X 1.

matrices therefore implies m
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Figure 10: Gluino-box diagrams contributing to the AB = 2 Hamiltonian. Two further
diagrams are obtained by 90° rotations.

of LHCD will be AZX(B,; — (J/1¢)cp+) which equals F0.04 & 0.01 in the SM. In view of
the smallness of this SM prediction the new contribution involving Imr should be taken
into consideration. The same remark applies to the even smaller SM prediction of the CP
asymmetry in flavour-specific decays [48].

With our large-tan § Feynman rules we have further investigated the contributions to
the AB = 2 Hamiltonian from box-diagrams with virtual gluinos and down-type squarks
depicted in figure 10. We find that contributions to ClL,QR, CVEE and Cfém are always
proportional to powers of 5Z},§, thus suppressed by m,/my. Contributions to CVXY and
Cf%L are proportional to (52159)2, which is rather small as discussed at the beginning of
section 4, and furthermore suffer from destructive interference between the § and b con-
tributions. These suppression effects render gluino contributions to the AB = 2 Hamilto-
nian numerically negligible compared to other supersymmetric contributions like e.g. those
from charginos or neutral Higgs bosons. The same statement holds for the neutralino
box diagrams.

5 Numerical study of C7; and Cg; and implications for B — ¢Kg

We have argued in the previous sections that at large tan 3 there can be potentially large
contributions to the coefficients of the (chromo-)magnetic AB = 1 operators O7 and Og
from SUSY-QCD. In order to have a clearer picture of this effect, we now present a numer-
ical study of the Wilson coefficients C7 and Cg and an application to the mixing-induced
CP asymmetry Sy .

As a first step, we have performed a general scan over the MSSM parameter space and
calculated the absolute values and phases of the various standard-model and supersymmet-
ric contributions to both C7 and Cg. Our ranges for the dimensionful MSSM parameters
are given in table 1. We vary the phase of A; between 0 and 27 and tan 3 between 40 and
60. In this section we further take u real and positive. Only parameter points compatible
with the following constraints have been accepted:

e All squark masses are larger than 200 GeV.
e The lightest supersymmetric particle (LSP) is charge- and color-neutral.

e The experimental 20-bound on the lightest Higgs-boson mass is respected.
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min (GeV) | max (GeV)
MGy Mg, My, 250 1000
1A, ], 14| 100 1000
1, My, Mo 200 1000
Ms 300 1000
m g0 200 1000

Table 1: Scan ranges used for massive MSSM parameters.
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Figure 11: Magnitudes of chargino and gluino contributions to C7(ususy) and Cs(psusy)
scanned over the MSSM parameter space.

e B(B — X4v) is in the experimental 20-range.

For the last constraint, B(B — X,7) has been calculated according to eq. (20) of ref. [62].
This results in a severe limitation for large values of |4;| since B(B — X4v) is dominated
by C7, which receives substantial SUSY corrections if both |A;| and tan 3 are large [63]. In
view of this fact, the question arises how a complex A; should be treated. It is often possible
to fine-tune its phase in such a way that the sum of a very large SUSY correction to Cr
and the standard model value is still compatible with the measurements of B(B — X,7).
We have decided to consider such a fine-tuning as unnatural and thus impose another
constraint on our scan points.

o We reject all points yielding a SUSY correction |CEUSY (my/)| > |C8M(mw)| = 0.22
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Figure 12: Magnitudes and phases of C7(my,) and Cs(m;) scanned over the MSSM pa-
rameter space. The meaning of the colours is the same as in figure 11. For further details
see text.

The results of the scan are depicted in figures 11 and 12. The plot in figure 11
is a comparison of the numerical importance of the well-known chargino contributions
C’7787>2¢ (ksusy) on the one hand and the new gluino contribution C7 g 5(f1susy) on the other
hand. We show the absolute values of these (complex) Wilson coefficients. The picture
confirms our rough estimate in eq. (4.19), i.e. it shows that the gluino contribution to C7 is
accidentally suppressed, whereas it is enhanced for C and can yield sizeable corrections,
especially for large values of |u|. The different colours of the scan points correspond to
different ranges of values for p as indicated in the picture legend.

Next, in figure 12 we have plotted for each scan point in the parameter space the
absolute values and phases of C7(my) and Cg(my), including the SM and charged-Higgs
contributions as well as the tan 8-enhanced chargino contributions. The abscissa always
represents our new value, taking into account also the gluino and neutralino contributions
from eqgs. (4.17), (4.18) and (4.20), while the ordinate represents the corresponding “old”
value, discarding gluino-squark and neutralino-squark diagrams. In this way, the deviation
from the diagonal indicates the relative size of the new contribution. In the Standard
Model both coefficients are negative; we have plotted here arg(—Cr7g) in order to center
the phase plots around the origin.

We can see that the gluino-squark contributions do not cause strong modifications of
C7(myp), however they can have a strong impact on Cg(m;) for large values of p. This
confirms again the result of our estimate in section 4.1. The reason for the dependence of
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MQL s Mugs Mdy | 600GeV | Ay | —600 GeV
7 800GeV | myo | 350GeV
M1 300 GeV M2 400 GeV
Ms 500 GeV | p4, 3r/2
tan 3 50

Table 2: Parameter point used for the numerical analyses of Cg(my) in figure 13 and Sy
in figure 14.

| Gl

0.25}

- - v L [ Ad (GeV)
400 600 800 1000 1200
Figure 13: |Cs(my)| as a function of |A4;| for the parameter point of table 2: full result
(solid) and result without the gluino contribution (dashed).

Cg(mp) on p is the experimental constraint from B(B — X47). The value of u determines
the mass of the higgsino component of the charginos. If |u| is small, the higgsino is light
and gives a potentially large contribution to C7(m;) which is only compatible with data
on B(B — Xv) if |A4| is rather small and the stops are rather heavy. As discussed above,
this reduces in turn the value of €pg, to which the gluino contributions to the magnetic
operators are proportional. Conversely, if |u| is large, the higgsino is heavy and larger
values of |A;| and epc are possible. This feature is illustrated in figure 13 where we
plot |Cs(my)| over |A;| while fixing the other MSSM parameters to the values given in
table 2 and applying the same constraints as above. We see that a wide range of values is
allowed for |A;| (this range corresponds to the plot range) and that the importance of the
gluino-squark contributions to |Cg(my)| grows with |A|.

Our finding affects some important low-energy observables which depend on Cg(my).
As an example, we have estimated the mixing-induced CP asymmetry Sy of the FCNC
decay BY — ¢Kg. This decay is generated by b — s5s QCD penguins and can thus arise
from the operator Og with the gluon coupling to 5s. Here we only want to give a qualitative
picture of the importance of the new contribution to the coefficient of Og. Therefore we
have calculated the matrix element only in the leading-order of QCD factorisation [64,
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Figure 14: S,i, as a function of |A4;| at the parameter point of table 2: full result
(solid) and result without the gluino contribution (dashed). The shaded area represents
the experimental 1o range and the dotted line is the Standard-Model value.

65], i.e. dropping O(Aqcp/mep) and O(ag) corrections. Only the tan S-enhanced chargino
and gluino contributions to Cg(my) are taken into account and their sum is denoted by
Cév P The result presented here is therefore not to be seen as a precise quantitative
prediction. A more detailed study including next-to-leading order effects will be performed
in an upcoming publication.

For the moment, we will follow the analyses of refs. [66] and [67] and write
Apics = (0K s|Het| B®) = Ape, [+ afge € + (W5 + b;Kse”)C’éVP*(mb)] (5.1)

for the B — ¢Kg decay amplitude and -/thbKS as the CP-conjugate B? decay amplitude.
We remark that the complex conjugation of Cév P is missing in ref. [67]. With the standard

definition
on A
>‘¢Ks = —ein ToKs (5.2)
"4¢Ks
the mixing-induced CP asymmetry reads
2 Im()\¢K )
S, =75 5.3
ST T4 s 2 (5:3)

In this section we have not considered possible new-physics contributions to the phase
¢p of B— B mixing, which are necessarily small in our naive MFV scenario. We have
found agreement with the numerical values of aj . and bfy  in ref. [66] and have used
Vs = [VasVunl/|VesVeb| 0, In figure 14 we plot Syrg versus [A;] for the parameter
point of table 2. We can see a large impact of the gluino-squark contribution on C’év P(my),
especially for large |Ay|.
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6 Conclusions

This paper addresses the MSSM for large values of tan 3. We have considered a version of
Minimal Flavour Violation (MFV) in which all elementary couplings of neutral bosons to
(s)quarks are flavour-diagonal and the flavour structures of W, charged-Higgs and chargino
couplings are governed by the CKM matrix. Complex phases of flavour-conserving param-
eters like the trilinear SUSY-breaking term A; are consistently included in our results. It
is well-known that loop suppression factors can be compensated by a factor of tan 3, so
that tan S-enhanced loop diagrams must be resummed to all orders in perturbation the-
ory [4-6, 21, 25, 38, 42]. Further tan S-enhanced loop-induced FCNC couplings of neutral
Higgs bosons lead to a plethora of interesting effects in B physics, which can be probed
with current data from B factories and the Tevatron [7, 22-24, 30, 33-36, 68]. The subject
is usually treated with the help of an effective field theory, a general two-Higgs-doublet
model. This model is found by integrating out the genuine supersymmetric particles and
is therefore valid for Msusy > v, M 40 o . In this paper we derive resummation formu-
lae which do not assume any hierarchy between Msugy, the electroweak scale v and the
Higgs masses. We use the diagrammatic resummation developed in ref. [21] and extend
the method to the case of flavour-changing interactions.

As a first result we derive the dependence of the resummation formula on the renormal-
isation scheme of the MSSM parameters. In particular we find that the familiar expression
of eq. (2.18) is modified if the sbottom mixing angle 0, is used as input. This result
is useful if high-pp collider physics is studied in conjunction with low-energy data from
B physics. While the focus of large-tan 8 collider physics has been on Higgs physics so
far [20, 21, 69, 70], our result permits the correct treatment of tan S-enhanced effects in
production and decay of bottom squarks. We then resum tan G-enhanced loop corrections
to flavour-changing processes for arbitrary values of the supersymmetric particle masses.
We find that the renormalisation of CKM elements and the loop-induced neutral-Higgs cou-
plings to quarks have the same form as in the decoupling limit Mgusy > v, M 40 go g+, but
the loop-induced couplings depend on the supersymmetric parameters in a different way.
As novel results we find tan S-enhanced loop-induced couplings of gluinos and neutralinos
and determine the analogous corrections to chargino couplings. These results permit the
study of tan S-enhanced corrections to processes involving a decoupling supersymmetric
loop. Since these processes vanish for Msuysy — oo, they cannot be studied with the
effective-field-theory method employed in refs. [7, 22, 23, 30, 33-36]. Other applications
are flavour-changing processes with squark final states, which may be a topic for the ILC.
All new FCNC couplings share a feature which was found for the flavour-conserving Higgs
couplings to quarks in ref. [21]: the resummed tan S-enhanced effects can be absorbed into
judiciously chosen counterterms. Therefore they can be viewed as effective local couplings,
irrespective of the hierarchy between Mgygy and v. We exploit this feature to derive effec-
tive Feynman rules (collected in appendix C) for all affected MSSM couplings. However,
tan B-enhanced corrections to suppressed tree-level couplings of order cot # are non-local

and involve process-dependent form factors.
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We have further performed an exhaustive phenomenological analysis of FCNC pro-
cesses in B physics. The new gluino-squark loop contributions are negligible for B— B
mixing and are small in b — s7v, where they are of similar size as the non-enhanced two-
loop contributions [51]. The latter feature stems from an accidental numerical suppression
factor in the Wilson coefficient C'7. This suppression is absent in Cg: here the gluino-squark
loop can contribute as much as the known chargino-squark diagram. We have studied the
impact on the mixing-induced CP asymmetry Syg in the decay By — ¢Ks. The result
in figure 14 complies with B(B — X7) and the experimental lower bounds on the masses
of sparticles and the lightest Higgs boson. Since no MSSM Higgs bosons are involved,
the size of Syx is uncorrelated with B(Bs — p*p~). Therefore tighter future bounds
on the latter quantity can be evaded by increasing Mo without suppressing Syr,. We
have further generalised the known neutral-Higgs mediated contributions to Bs — pu™ ™~
and B, — B, mixing to the case of arbitrary Mgygy. Our more accurate expression for
B(Bs — p*tp~) is especially useful once LHCb measures this branching fraction in excess
of the SM prediction. Finally we have identified a new contribution to By — B, mixing:
The parameter r in eq. (4.38) can alter the phase of the By — B, mixing amplitude and
may affect the mixing-induced CP asymmetry in By — J/¢.
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A Conventions

Throughout this paper, our notation for SUSY parameters, sparticle masses and mixing
matrices follows the conventions of the SLHA [43]. In section A.1 we extend the SLHA
to accommodate complex phases in the squark mass matrices. In section A.2 we give
explicit expressions for certain combinations of elements of the chargino mixing matrices.
Section A.3 lists the loop functions entering our results.

A.1 Squark mixing

In the naive MFV scenario the squark mass-matrices are hermitian 2 x 2-matrices. For
top- and bottom-squarks they can be expressed in the basis (qr,Gr) with ¢ = ¢,b as

M2 = <m§L Xq ) . (A1)

* 2
X7 még
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The diagonal elements can be chosen real and are given by

m%L :ﬁléL + mg + (Tg’ — Q, sin® Oy )m?% cos 23, (A.2)
mg'R :T%ZR + mtzl + Qg sin® Oy cos 2. (A.3)

Neglecting terms proportional to the small vy in the off-diagonal elements we obtain
X7 = miA;j, (A.4)
X; = —yl()o)*vuu. (A.5)
The mass eigenstates q1 2 are related to the weak eigenstates via
(G1,32)" = R (qr,dr)" (A.6)

with a unitary matrix R? which diagonalises the mass matrix:

]?Eq./\/l%}?iqT = diag(mél,m%), (A.7)
1
mg'l,z = 9 <m?jL + mg'R + \/(m?jL o m23)2 + 4|Xq|2) . (A.8)

If the diagonal elements of the mass matrix are chosen real, the mixing matrix contains

only one physical phase and can thus be parameterised as

Ra_ cos éq sin éqei‘{’q (A.9)
—sin éqe*wq cos éq ’ ’

i.e. by two real parameters, the mixing-angle éq and the phase <5q. In practical calculations
where squarks are involved, elements of the mixing matrices appear in the Feynman rules.
One then has the choice either to consider éq and (]3q as input parameters or to express
them by means of the relation

2 _ 20
Mg, — Mg,

ei% sin 20, = (A.10)

that can be derived from eq. (A.7). To give separate relations for éq and éq one has to
specify the allowed range for both parameters. Choosing 6, € [0, 7/4] and ¢, € [0,27) for

~ 2){~
, ¢g = arg <7m2 qmg ) : (A.11)

example results in

2X;
2 2
Mg, — Mg,

sin 2§q = '

q1 q2

Constraining 6~?q to this interval amounts to defining §; (¢2) as the eigenstate which is
predominantly left-handed (right-handed).

We emphasize that in the sbottom mass-matrix we have defined the off-diagonal ele-
ment Xj in terms of the Yukawa coupling yl()o) instead of the bottom mass. This parame-
terisation is valid irrespective of the renormalisation scheme used for the tan G-enhanced
corrections to my. In practical calculations, one can use one of the resummation formulae
given in section 2.1 to relate yéo) to the measured bottom mass. The corresponding cor-
rections to mg in the diagonal elements of the sbottom mass-matrix are negligible since

2 ~2 =2
my <K MG, My
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A.2 Chargino mixing

In our conventions the chargino mass-matrix is given by

o M2 \/iMW sinﬁ
M;(i = (\/iMW cos 8 i ) . (A.12)

We define the biunitary transformation which brings it into diagonal form as
U M= VT = diag <m)~d[,m)~<g[> ) (A.13)

The matrices U and V can be determined by diagonalising the matrices ./\/l;%i./\/lgi and
M+ ./\/l;%i. In Feynman amplitudes for diagrams with chirality-flipping propagators only

certain combinations of matrix-elements of U and V appear. These combinations can be
expressed as

- Mot Mo —mozp*e®™®  _  _ M+ sin f + m-z cos 3™
UV = —1—; X2 , UnViz = V2My —4 e ;o (A14)
ma, —m=, ma, —m=,
1 X2 X1 X2
- Mt (o — Mt My e - M+ cos f + m-z sin 3 e™¥
UraVip = ——— X2 , UVin = V2My —2 3 2 , (A15)
ms, —m=, ms, —m=,
X1 X2 1 X2
- mesp* eV —mes My M+ cos B eV +m-z sin 3
Up Voy = — 2 2X2 , Us1Vag = —V2Myy —4 3 2 = , (A.16)
m2, —m=, m2, —m=,
X1 X2 X1 X2
I metM§ eV —mozp M-+ sin B e + m-zx cos 3
UpaVay = —1— 2 UV = —V2My —2 3 . (A.17)
ms, —m=, ms, —m=,
X1 X2 X1 X2
with
e = (Mop — M3, sin 2B)/(mﬁC m)at) (A.18)

For large tan 8 the cos S-terms can be neglected and the above expressions reduce to

2 2 .
L My, My | o \/iMwmﬁc sin 3
UnVii = = R UnViz = 5 5 , (A.19)
m%:t m~i — m~i m~i — m~i
1 X1 X2 X1 X2
2 M. 2 .
~ = po Mg, — Mo ~ ~ M, 2Mypusinfg
Ur2Vig = = 3 UV = F— > (A.20)
1 X1 X2 1 X1 X2
2 2 .
~ - M, |ul* = m)?éf o~ \/EMWmEE sin 3
U1 Vo1 = - —3 5 UnVay = — 5 > (A.21)
m%:t m~i — m~i m~i — m~i
2 X1 X2 X1 X2
~ ~ % ~ ~ 2Myy M sin 8
Uy Vg = —— . 3 2 Uy Vg = ——H—. 5 - (A.22)
m~+ m~i — m~:|: m~+ m~:|: — m~i
X2 X1 2 X2 X1 X2
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A.3 Loop functions

In the calculation of quark self-energies with internal SUSY particles, we use the scalar

integrals
@)t d’q
Bo(mi,mz) = i2 /(q 2—mi)(q* —m3)’ (A.23)
_ @mp)te d'q
Co(my, ma, mg) = o /(q Py 1 prp—t e (A.24)
_ @mp)te d'q
Dol iz ma, ma) = = /(q B~ =R —md) )

where p is the renormalisation scale. This corresponds to the well-known Passarino-
Veltman notation with vanishing external momenta. Besides, we use the function

~ (2mp) q* dlq
Dy(mi,ma,ms3,my) = 2 / @ —m )(q — mg)(q — )(q2 — mi) (A.26)

Explicit expressions for these integrals read

2 m% m%
Bo(my,ma) :——7E+10g47r+1—10g—+7210g—2, (A.27)
d p? o ms —mi m
m2 m2 m2 2
Co(my,ma,mg) = 2 log — + 3 log—, (A.28)
(mi —m3)(m3 —m3) "~ m3  (mi—m3)(m5 —m3) 3
Do(my, ma, msz, my) m3 log %—i—
U (m3 —m3)(m3 —m3)(m3 —m3) ~ mj
2 2
m3 1
log +
(m3 —m3)(m3 — m3)(m3 —mj) 3
2 2
my my
log —, A.29
g =) (% — ) — ) % el (4.29)
Dy ) s log "L ¢
2(M1, M2, M3, M4y Og_
(m3 —m3)(m3 —m3)(m3 —m3) 5
(m3 —m3)(m3 — m3)(m3 —mj) 3
4 2
my
I . A.30
mZ — m2)(m2 — m2)(m2 —m2) " © m2 ( )
i —m3)(mi —m3)(mj —mj3 i

The divergence in By always drops out when we sum over the internal squarks and gauginos.

In our expressions for the Wilson coefficients C7 g, we use the loop functions

5—Tx x(3z — 2)

fi(x) :6(x e + 3z =178 log x, (A.31)
fa(x) :2(zi 1)2 G _xl)g log x, (A.32)
fa(x) = 1 — z 5 log . (A.33)

2@ —-1) 2z -1)

,39,



~~RL(1)
- bs

Figure 15: QCD corrections to the self-energy S7F (left) and the bottom mass my, (right).

B QCD corrections to flavour-changing self-energies

Here we want to discuss the issue of the bottom mass appearing in calculations following
the approach of section 3.1. In that section, we have introduced tan -enhanced flavour-
mixing via flavour-changing self-energies E,ﬁL in external legs. As a consequence the quark

pole pole
pole-mass my p D

enters the resulting expression through the Dirac equation pb = m
However, as we will show in this section, QCD corrections add in such a way that the final
result does not depend on mlgde but only on the MS-mass my.

To see this we consider an effective theory at p ~ O(my) where the SUSY-particles
are integrated out. The self-energy E{)%SL then appears as Wilson coefficient of the (on-shell
vanishing) operator bPrs. Comparing QCD corrections to this operator to QCD corrections
to the bottom mass my (see figure 15) we find
S ) _ )

p— 3 B-l
S —_ (B.1)

where p denotes the external momentum. Therefore the Wilson coefficient Efff and the
MS-mass m; renormalise the same way. To make the behaviour under renormalisation

explicit we write
S = myA (B.2)

where now A is renormalisation-scale-independent (note the analogy to the definitions of
ey and €pc in egs. (2.4), (2.8) and (3.1) which are thus renormalisation-scale independent).

Now we calculate QCD corrections to the diagrams in figure 5. Using the parame-
terisation (B.2) for E,ﬁl’ and neglecting the s-quark mass the Feynman amplitudes for the

diagrams in figure 5 read

Z(p + mb)

1 res 1 res
M = e BTN (imfity = - 4, ®3)
T —=my p=0
2 + mg
A4§)—-AA§“ (g 2 (_dgﬁfﬂ::_+A4gﬁ.jfhlfgg. (B.4)
pe —mg3 pzmgole mi’

Since we want to perform a calculation up to order ay in the effective theory we have
to determine A from two-loop matching at the SUSY scale and we make this explicit by
writing

A= A0 4 AW (B.5)
where A contains O(as) QCD-corrections. The one-loop corrections to M; and Mo
in the effective theory are given in figures 16 and 17, respectively, with diagrams (1b)
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Figure 16: QCD corrections to diagram (1) in figure 5.

and (2b) taking into account the counterterm to the Wilson coefficient St = m;, A. As
a consequence of (B.1), the contributions of (la) and (1c) and of (1b) and (1d) cancel
pairwise so that the expression for M in (B.3) still holds at one loop with A = A©) 4 A1)
instead of A = A(). For the contributions of (2a) and (2b) we find with the help of (B.1)

2a res Z(p + ms) RL(1)* res * EQCD(p)
M; ) - M2 - m <_Zzb8 v (p)) ____pole - M2 " A(O) : pole (B6)
S p_mb mb p:mi)ole
+ ms
ME) — ppt i(p +ms) (—idmy AQ*) = MEest . 4O omi, (B.7)
p2 _ mg p*mPOle mg)ole
)

Adding these to eq. (B.4) one gets

" A0)« A(D)x
Mo = ME -+ MED 4 M) = w5 (mb b+ SO im ).
m =my,

bpole A0)%
(B.8)
Plugging in
mg)ole — my + E?C’D(p)‘?_ sole —+ 5mb (Bg)
=my
and dropping terms of order O(a?) we get the final result
My = My (AOF L Ay = piest . 4% (B.10)

: I
which now does not depend on my;*® anymore.

Applying this result to our case by expressing A in eq. (B.10) through X/ via egs. (B.2)
and (3.1) we find eq. (3.5). Since eq. (3.1) is linear in m;, the parameterisation of eq. (B.2)
is quite natural. When one considers a more general Efst which is no longer linear in my,
(for example in the generic MSSM), the parameter A depends on my, via (B.2) but in any

. . 1
case it does not involve mgo °.
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Figure 17: QCD corrections to diagram (2) in figure 5.

C Feynman rules

In this appendix, we explain how tan S-enhanced loop corrections can be incorporated into
calculations in the MSSM with naive MFV by simple modifications of the Feynman rules.
The resulting modified rules are valid beyond the decoupling limit and refer to input scheme
(i) for the sbottom parameters specified in section 2.1. They can also be used for processes
with external SUSY particles. The modifications, which can easily be implemented into

computer programs like FeynArts, are given as follows:

(i) Express the Feynman rules in terms of the down-type Yukawa couplings yg, and
replace them according to relation (2.18) by
(0) — mdi C 1
Ydi = Ya; Ud(l + € tanﬁ) ’ ( ’ )
It should be stressed that the same replacement has to be performed for the Yukawa
coupling appearing in the sbottom mass matrix Mj in (A.1) before determining the
mixing angle via (A.10). In case one wants to rely on input scheme (iii) the sbottom
mixing matrix has to be calculated iteratively as described in section 2.2.

(ii) Replace CKM-elements involving the third quark generation according to

1+ ¢ tan 3 .
Vi — VO = Vii =d C.2
¢ ti 1 + (Eb - fpc) tan ﬁ ¢ (Z 78) ( )
(0) 1+ ¢ tan 3

G = V; | = . C.3
ib 14+ (Ez _ ETS‘C) tanﬂ ib (Z u,c) ( )
All other CKM-elements remain unchanged. The V;; appearing after these replace-
ments correspond to the physical ones which can be measured from the W*u;d;-

vertex.

(iii) This last rule concerns vertices involving down-type quarks. Into these one has to
include the flavour-changing wave-function counterterms

2 1+etand Ot '
§ZE __Mi |_€rctan B €pc tan g8 £17(0) (C.5)
2 mp |1+ etanf 1+ € tanf tb ¥ '

— 492 —



for i = d, s. This leads to additional flavour-changing vertices and occasionally cancels

the corrections from rule (ii).

If one uses our Feynman rules, tan S-enhanced loop corrections of the form (e tan 3)"
are automatically resummed to all orders. There is one exception: proper vertex-corrections
to the tan F-suppressed h0d'd’- and H +diLu§%—vertices and to the corresponding Goldstone-
boson vertices can not be accounted for by this method.

As mentioned above, additional flavour-changing vertices are generated by replacement
rule (iii) in the case of external down-quarks. In the following we give explicit Feynman
rules for these vertices, suppressing therein colour indices of (s)quarks. Repeated indices

57 527
x§ (5]1 vy + =Lyl - yﬁf”) Py

are not summed over.

2 2

oZR VAT
* 0)x* 7 0)* i (0)*
+(x3) (5]1 y "+ =y - - v ) Pr

. (C.6)

with xfl = (cosa, —sina,isin 3, —icos B) for SO = (H° h° A° GO)

d;
g+ . SZE .
> - Z§L Yu; Vii P+ ZSR < 0) V,(Z,O) + TJ yc(g) Vi | Pr (C.7)
Uj

with €7 = (cos B,sin ) and &3 = (sin 3, — cos 3) for ST =(HT,G") (C.8)

d; . e
A a Vi (v, R4V — 9B Vi) P
e

o = o0, 925 o
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e
ds ~ §Z% 2 .

J —1 <5ji + 2] ) \é_ /Rsé ml +y(0) R m3 | Pr (C.12)
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Occasionally, the flavour-changing counterterms have to be explicitly inserted into external

or internal quark lines. In these cases, they cancel insertions of tan S-enhanced flavour-

changing self-energies up to corrections which are suppressed by at least one power of

my/Mgusy. The Feynman rule reads

, m;  0Z; m;  OZ
—1 — Py,
1+e¢tang 2 l+etanf3 2

%Y
i Pr. (C.13)
l+etanfs 2 1+e;tanﬁ 2
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